机房dalao推荐写的。。。(标签分层图)

经过前几题的分层图的洗礼,我深刻地体会到了分层图的优点和好处(主要是不想打dp....)

先说题吧....

很明确,模型是最短路,但是,怎么跑k个,是个问题....

解题过程:

1、先跑最短路,记录路径,然后找路径上的k条最长边,删掉

tips:贪心,很容易hack掉。

2、建两层的分层图(以前打的都是两层居多)

tips:会跑出0来....

solution:

主要就是:怎么连边喽....一开始老是卡住

连边有2种情况:

  1. 同一层之间的边,边权为题目给的边权,同层之间连
  2. 层与层之间,一个点连到下一层的它对应的出点,边权为0,为单向边

一共K层,上层可以跑到下层的出点,却不能回去,这就是一次免票。

然后跑最短路,最后查t+n*k那个点的dis就可以了。

for(int i=;i<=m;i++)
{
int x,y,z;
x=read();y=read();z=read();
addedge(x,y,z);
addedge(y,x,z);
for(int j=;j<=k;j++)
{
addedge(x+n*j,y+n*j,z);
addedge(y+n*j,x+n*j,z);
addedge(x+(j-)*n,y+j*n,);
addedge(y+(j-)*n,x+j*n,);
}
}

如上,分层连边。

之后就是一个spfa的事了(然而我各种常数(畜生)优化+O2卡到比旁边dalao快600ms的地步哈哈哈哈)

值得注意:

1、最后要把每一层的t点连在一起,因为如果在第二层就跑到了最短,在最后一层的t并不能查到正确答案

2、一共有k+1层,所以初始化dis要k+1层,因为这个卡了一小会...

#include<bits/stdc++.h>
using namespace std;
const int maxn=6e6+;
int n,m,k;
int s,t;
inline int read()
{
int x=,f=;char s=getchar();
while(s>''||s<''){if(s=='-')f=-;s=getchar();}
while(s<=''&&s>=''){x=x*+s-'';s=getchar();}
return x*f;
}
struct edge
{
int to,next,dis;
}e[maxn];
int head[maxn],cnt;
inline void addedge(int from,int to,int dis)
{
e[++cnt].next=head[from];
e[cnt].to=to;
e[cnt].dis=dis;
head[from]=cnt;
}
int dis[maxn],vis[maxn];
struct cmp
{
bool operator () (int a,int b)
{
return dis[a]>dis[b];
}
};
priority_queue < int , vector < int > , cmp > q;
//queue < int > q;
void spfa(int s)
{ for(int i=;i<=(k+)*n;i++)
{
dis[i]=;
vis[i]=;
}
//memset(dis,0x3f,sizeof(dis));
q.push(s);
dis[s]=;
vis[s]=;
while(!q.empty())
{
//cout<<233;
int u=q.top();
//int u=q.front();
q.pop();
vis[u]=;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(dis[v]>dis[u]+e[i].dis)
{
dis[v]=dis[u]+e[i].dis;
if(vis[v]==)
{
q.push(v);
vis[v]=;
}
}
}
}
}
int main()
{
n=read();
m=read();
k=read();
s=read();
t=read();
for(int i=;i<=m;i++)
{
int x,y,z;
x=read();
y=read();
z=read();
addedge(x,y,z);
addedge(y,x,z);
for(int j=;j<=k;j++)
{
addedge(x+n*j,y+n*j,z);
addedge(y+n*j,x+n*j,z);
addedge(x+(j-)*n,y+j*n,);
addedge(y+(j-)*n,x+j*n,);
}
}
for(int i=;i<=k;i++)
addedge(t+(i-)*n,t+i*n,);
spfa(s);
cout<<dis[t+k*n];//printf("%d",dis[t+k*n]);
return ;
}

现在来说一说dp和分层图的关系:

首先,分层图的“层”是什么,它就是dp中的状态。在一些图论题目中,状态不好转移,就可以使用分层图进行转移,不需要再管“从哪转移”这个问题,剩下的最优解直接交给spfa就行了。(最优贸易

这些状态之间可以互相转移,一般在二维或是以上,可以省去一些不相关状态的枚举,但是因为spfa的广泛枚举性还是会枚举更多“不是最优解”的状态的。

(完)

P4568 [JLOI2011]飞行路线(分层图)的更多相关文章

  1. P4568 [JLOI2011]飞行路线 分层图

    题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在nn个城市设有业务,设这些城市分别标记为00到n-1n−1,一共有mm种航线,每种航线连接两个城市,并且 ...

  2. P4568 [JLOI2011]飞行路线 分层图最短路

    思路:裸的分层图最短路 提交:1次 题解: 如思路 代码: #include<cstdio> #include<iostream> #include<cstring> ...

  3. bzoj2763: [JLOI2011]飞行路线(分层图spfa)

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3234  Solved: 1235[Submit][Stat ...

  4. bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MB Description Alice和Bob现在要乘飞机旅行,他们选择了一家相 ...

  5. BZOJ2763[JLOI2011]飞行路线 [分层图最短路]

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2523  Solved: 946[Submit][Statu ...

  6. [BZOJ2963][JLOI2011]飞行路线 分层图+spfa

    Description Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并 ...

  7. BZOJ2763: [JLOI2011]飞行路线(分层图 最短路)

    题意 题目链接 Sol 分层图+最短路 建\(k+1\)层图,对于边\((u, v, w)\),首先在本层内连边权为\(w\)的无向边,再各向下一层对应的节点连边权为\(0\)的有向边 如果是取最大最 ...

  8. 【bzoj2763】[JLOI2011]飞行路线 分层图最短路

    题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  9. bzoj 2763 [JLOI2011]飞行路线——分层图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2763 分层图两种方法的练习. 1.把图分成k+1层,本层去上面一层的边免费.但空间时间都不算 ...

  10. bzoj2763 [JLOI2011]飞行路线——分层图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2763 构建分层图. 代码如下: 写法1(空间略大)(时间很慢): #include<i ...

随机推荐

  1. .NET进阶篇-语言章-2-Delegate委托、Event事件

    知识只有经过整理才能形成技能 整个章节分布简介请查看第一篇 内容目录 一.概述 二.解析委托知识点 1.委托本质 2.委托的使用 3.委托意义 逻辑解耦,减少重复代码 代码封装支持扩展 匿名方法和La ...

  2. 给老师安排课表JAVA项目及登录窗口的实现

    实现一个安排课表的Java实验. 有以下几点要求: ①用所给的教师姓名进行课表安排 ②用所给的地点进行课表安排 ③不得有重复的课程名称出现 ④将信息写入到文件里 ⑤用窗口来进行实现 package c ...

  3. Windows搭建SVN服务器

    安装 1.下载地址:https://www.visualsvn.com/files/VisualSVN-Server-4.0.3-x64.msi 2.开始安装: 3.安装配置: 4.Next直到完成 ...

  4. liunx下安装MySQL

    1.安装依赖包:yum -y install gcc gcc-c++ ncurses ncurses-devel cmake bisonyum install -y perl-Module-Insta ...

  5. Spring 注册BeanPostProcessor 源码阅读

    回顾上一篇博客中,在AbstractApplicationContext这个抽象类中,Spring使用invokeBeanFactoryPostProcessors(beanFactory);执行Be ...

  6. 01 【PMP】组织结构类型

    [PMP]组织结构类型   1.简单型 描述:人员并肩工作,所有者/经营者直接做出主要决定并监督执行. PM角色:兼职(协调员) PM权限:极少(无) 项目管理人员:极少(无) 资源可用性:极少(无) ...

  7. 原生无缝Banner轮播图

    话不多说,先展示效果图.由于录制工具,稍显卡顿,实际是流畅的.可以看到实现了无缝轮播,鼠标悬停,点击左右上下按钮切换Banner的功能,如图1所示. 图1 原生无缝banner效果展示 以我这个轮播图 ...

  8. 存储过程导出数据到csv

    USE [database] GO SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO -- P_AutoInspect_LogToFilePath 'F ...

  9. 11.Linux用户特殊权限

    1.特殊权限概述 前面我们已经学习过 r(读).w(写). x(执行)这三种普通权限,但是我们在査询系统文件权限时会发现出现了一些其他权限字母,比如: 2.特殊权限SUID set uid 简称sui ...

  10. javascript学习总结之Object.assign()方法详解

    最近再写ES6的文章时候发现自己对Object.assign()方法不太了解,之前也没有接触过所以就就查阅了相关的资料,为了自己以后肯能会用到以及对知识进行巩固,所以在这里记录下自己学习的点点滴滴,毕 ...