NOIP 2016 组合数问题
洛谷 P2822 组合数问题
JDOJ 3139: [NOIP2016]组合数问题 D2 T1
Description
组合数Cnm表示的是从n个物品中选出m个物品的方案数。举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法。根据组合数的定义,我们可以给出计算组合数的一般公式:
Cnm=n!m!(n−m)!
其中n! = 1 × 2 × · · · × n
小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足Cij是k的倍数。
Input
第一行有两个整数t,k,其中t代表该测试点总共有多少组测试数据,k的意义见 【问题描述】。
接下来t行每行两个整数n,m,其中n,m的意义见【问题描述】。
Output
t行,每行一个整数代表答案。
Sample Input
1 2 3 3
Sample Output
1
HINT
【样例解释】
在所有可能的情况中,只有C21=2是2的倍数。
【子任务】
Source
题解:
一开始动手做这道题的时候,自己还是一个对组合数没什么概念的蒟蒻。强行套公式理解后各种TLE、OLE、WA,总之就是爆零。我太菜了
后来就自学了组合数:
发现其实很好理解,没多少东西。
所以掌握了从通项公式到递推公式进阶的我成功地拿到了70分:
代码:
#include<cstdio>
#include<algorithm>
#define int long long
using namespace std;
int t,k;
int n,m,ans;
int c[2010][2010];
signed main()
{
scanf("%lld%lld",&t,&k);
c[0][0]=c[1][0]=c[1][1]=1;
for(int i=2;i<=2000;i++)
{
c[i][0]=1;
for(int j=1;j<=2000;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1]);
}
while(t--)
{
ans=0;
scanf("%lld%lld",&n,&m);
for(int i=0;i<=n;i++)
for(int j=0;j<=min(i,m);j++)
{
int tmp=c[i][j]/k;
if(tmp*k==c[i][j])
ans++;
}
printf("%lld\n",ans);
}
return 0;
}
后来加取模之后还可以多过两个点(WA了的那俩,是由于数据太大爆long long的)
代码:
#include<cstdio>
#include<algorithm>
#define int long long
using namespace std;
int t,k;
int n,m,ans;
int c[2010][2010];
signed main()
{
scanf("%lld%lld",&t,&k);
c[0][0]=c[1][0]=c[1][1]=1;
for(int i=2;i<=2000;i++)
{
c[i][0]=1;
for(int j=1;j<=2000;j++)
c[i][j]=(c[i-1][j]%k+c[i-1][j-1]%k)%k;
}
while(t--)
{
ans=0;
scanf("%lld%lld",&n,&m);
for(int i=0;i<=n;i++)
for(int j=0;j<=min(i,m);j++)
{
int tmp=c[i][j]/k;
if(tmp*k==c[i][j])
ans++;
}
printf("%lld\n",ans);
}
return 0;
}
然后绞尽脑汁地想那俩TLE了的点是怎么错的。各种卡常还是失败了。然后分析时间复杂度,发现最后出问题的还是枚举判断的地方。
想一下,这个程序的时间复杂度,就算把预处理的部分除掉,最后还会出现\(O(t\times n\times m)\)的复杂度。必\(T\)无疑,这是无论怎么加优化都没有用的。
我们得优化算法本身的复杂度:
如果\(O(nm)\)的级别不够,那就化成\(O(1)\)级别的。
是的,你没看错,在给定\(k\)之后,完全可以在预处理的部分提前处理出所有的答案。
代码:
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
int t,k;
int n,m;
ll c[2010][2010];
ll ans[2010][2010];
signed main()
{
scanf("%d%d",&t,&k);
c[0][0]=c[1][0]=c[1][1]=1;
for(int i=2;i<=2000;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++)
{
c[i][j]=(c[i-1][j]+c[i-1][j-1])%k;
ans[i][j]=ans[i-1][j]+ans[i][j-1]-ans[i-1][j-1];
if(!c[i][j])
ans[i][j]++;
}
ans[i][i+1]=ans[i][i];
}
while(t--)
{
scanf("%d%d",&n,&m);
if(m>n)
{
printf("%lld\n",ans[n][n]);
continue;
}
printf("%lld\n",ans[n][m]);
}
return 0;
}
NOIP 2016 组合数问题的更多相关文章
- NOIP 2016 组合数问题 题解
一道sb题目,注意范围,可打表解决,打出杨辉三角,在用前缀和求解即可 代码(一维前缀和) #include<bits/stdc++.h> using namespace std; int ...
- NOIp 2016 总结
NOIp 2016 总结 -----YJSheep Day 0 对于考前的前一天,晚自习在复习图论的最短路和生成树,加深了图的理解.睡得比较早,养足精力明日再战. Day 1 拿到题目,先过一边,题目 ...
- 【NOIP 2016】斗地主
题意 NOIP 2016 斗地主 给你一些牌,按照斗地主的出牌方式,问最少多少次出完所有的牌. 分析 这道题的做法是DFS. 为了体现这道题的锻炼效果,我自己写了好多个代码. Ver1 直接暴力搞,加 ...
- [NOIP]2016天天爱跑步
[NOIP]2016天天爱跑步 标签: LCA 树上差分 NOIP Description 小C同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是 ...
- NOIP 2016 迟来的满贯
17-03-22,雨 17-03-22,一个特别重要的日子 在这一天,本蒻攻克了NOIP 2016最难的一题,D1T2——天天爱跑步 实现了NOIP 2016的AK! YAYAYAYAYAYAY 自然 ...
- NOIP 2016 D2T2 蚯蚓](思维)
NOIP 2016 D2T2 蚯蚓 题目大意 本题中,我们将用符号 \(\lfloor c \rfloor⌊c⌋\) 表示对 \(c\) 向下取整,例如:\(\lfloor 3.0 \rfloor = ...
- noip 2016 day2 t1组合数问题
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- NOIP 2016 提高组 复赛 Day2T1==洛谷2822 组合数问题
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- 【noip 2016】 组合数问题(problem)
杨辉三角形求组合数问题 原题点这里 #include <iostream> #include <cmath> using namespace std; long long a[ ...
随机推荐
- JavaWeb入门——Tomcat的目录结构
JavaWeb入门——Tomcat的目录结构 摘要:本文主要了解了Tomcat的目录结构. 目录结构 打开Tomcat的目录,可以看到如下文件和文件夹: bin目录 该目录下存放的是二进制可执行文件. ...
- Spring 核心技术与产品理念剖析【下】
3. Spring Cloud 蝶变重生 Spring 框架的升级演进都是围绕分层架构进行的,从简单到复杂,再回到简单的过程.如果我们没有经历过 Spring 最开始繁琐的配置,然后一步步精简,就根本 ...
- swift冒泡排序,swift快速排序,swift归并排序,swift插入排序,swift基数排序
import UIKit /// 冒泡 /// ///时O(n2),空O(1) 稳定排序 func Mysort(arr:[Int]) -> [Int]{ var transArr = arr ...
- ABP入门教程0 - 目录
ABP入门教程 本教程主要讲解如何基于ABP实现CURD(增删改查)示例. 源码已分享: GitHub Gitee ABP入门教程0 - 目录 ABP入门教程1 - 开篇 ABP入门教程2 - ...
- LeetCode刷题191123
博主渣渣一枚,刷刷leetcode给自己瞅瞅,大神们由更好方法还望不吝赐教.题目及解法来自于力扣(LeetCode),传送门. 算法: 给出一个区间的集合,请合并所有重叠的区间. 示例 1: 输入: ...
- 今日资源帖-PPT逆袭秘籍72集+2000套模板,太经典了
好资源不私藏,分享是一种态度 今日给大家分享的是PPT教程和2000套模板 如何让PPT成为你职场的利器 如何让你的PPT更具表现力 2000套模板随便选 PPT视频教程 链接 https://pan ...
- java8的捕获多个异常的一个写法
这是按intellij idea的提示知道的, 可以写成 catch(xxxException | yyyException | zzzException e){ } 这样的形式,对几个不同的异常使用 ...
- Map随笔:有序的HashMap——LinkedHashMap
目录 Map随笔:有序的HashMap--LinkedHashMap 一,概述 二,源码结构 三,总结 Map随笔:有序的HashMap--LinkedHashMap 一,概述 LinkedHas ...
- 记录自己的一次pjax性能优化
什么是pjax? pjax = ajax + pushState 通过ajax让页面进行局部刷新,然后通过pushstate让url发生改变,再让pushState,让页面产生一个回退的记录,从而让页 ...
- EEPROM的概念接口类型及软件实例
基本概念 EEPROM的全称是“电可擦除可编程只读存储器”,即Electrically Erasable Programmable Read-Only Memory.是相对于紫外擦除的rom来讲的.但 ...