点此看题面

大致题意: 一个长度为\(n\)的数组,实现两种操作:将满足\(gcd(i,k)=d\)的\(a_i\)加上\(v\),询问\(\sum_{i=1}^xa_i\)。

对于修改操作的推式子

莫比乌斯反演真是个神奇而又有趣的东西......

考虑修改操作是将满足\(gcd(i,k)=d\)的\(a_i\)加上\(v\),则若\(d\not| k\),显然是不存在满足条件的\(i\)的,可以直接忽略这一修改操作(忘记判断结果调到心态爆炸......)

否则,也就相当于:

\[a_i+=v\cdot[gcd(i,k)=d]
\]

将\([gcd(i\cdot d,k)=d]\)转化,即三个数同时除以\(d\),得到:

\[a_i+=v\cdot[gcd(\frac id,\frac kd)=1]
\]

根据\(\sum_{p|x}\mu(p)=[x=1]\)这一性质,我们就可以将上述式子再次变形,得到:

\[a_i+=\sum_{p|\frac id,p|\frac kd}v\cdot\mu(p)
\]

因为原式中\(p|\frac id\)这一限制等同于\((p\cdot d)|i\),所以就等同于:

\[a_i+=\sum_{(p\cdot d)|i,p|\frac kd}v\cdot \mu(p)
\]

如果我们枚举满足\(p|\frac kd\)的\(p\),并增开一个辅助数组\(f\),每次修改操作就相当于修改\(f\):

\[f_{p\cdot d}+=v\cdot\mu(p)
\]

那么对于\(a_i\),其实就可以得到:

\[a_i=\sum_{j|i}f_j
\]

对于询问操作的推式子

题目询问我们\(\sum_{i=1}^xa_i\)。

由之前推出的式子我们知道:

\[a_i=\sum_{j|i}f_j
\]

所以,答案就是:

\[\sum_{i=1}^x\sum_{j|i}f_j
\]

调整枚举顺序,先枚举\(j\),得到:

\[\sum_{j=1}^x\lfloor\frac xj\rfloor f_j
\]

所以,我们可以先除法分块,并利用树状数组实现对\(f\)的区间求和,即可得出答案了。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 200000
#define LL long long
#define pb push_back
using namespace std;
int n;vector<int> v[N+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void put_case(CI x) {pc(67),pc(97),pc(115),pc(101),pc(32),pc(35),write(x),pc(58),pc(10);}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
}F;
class LinearSieve//线性筛预处理莫比乌斯函数
{
private:
int Pt,P[N+5],mu[N+5];
public:
I int operator [] (CI x) Con {return mu[x];}
I LinearSieve()
{
mu[1]=1;for(RI i=2,j;i<=N;++i)
for(!P[i]&&(mu[P[++Pt]=i]=-1),j=1;j<=Pt&&1LL*i*P[j]<=N;++j)
if(P[i*P[j]]=1,i%P[j]) mu[i*P[j]]=-mu[i];else break;
}
}Mu;
class TreeArray//树状数组实现单点修改、区间求和
{
private:
LL a[N+5];
public:
I void Clear() {memset(a,0,sizeof(a));}
I void Add(RI x,CI y) {W(x<=n) a[x]+=y,x+=x&-x;}
I LL Qry(RI x,LL t=0) {W(x) t+=a[x],x-=x&-x;return t;}
}T;
int main()
{
RI Tt=0,Qt,op,x,y,z,l,r;LL t;vector<int>::iterator it;
for(RI i=1,j;i<=N;++i) if(Mu[i]) for(j=i;j<=N;j+=i) v[j].pb(i);//预处理约数,注意μ=0可忽略
W(F.read(n),F.read(Qt),n&&Qt)
{
F.put_case(++Tt),T.Clear();W(Qt--) switch(F.read(op),F.read(x),op)
{
case 1:if(F.read(y),F.read(z),x%y) continue;x/=y;//注意判断不整除情况直接跳过
for(it=v[x].begin();it!=v[x].end()&&*it*y<=n;++it) T.Add(*it*y,Mu[*it]*z);break;//枚举约数在树状数组上修改
case 2:for(t=0,l=1;l<=x;l=r+1) r=x/(x/l),t+=(T.Qry(r)-T.Qry(l-1))*(x/l);F.writeln(t);break;//除法分块+树状数组求答案
}
}return F.clear(),0;
}

【HDU4947】GCD Array(莫比乌斯反演+树状数组)的更多相关文章

  1. 【HDU4947】GCD Array (莫比乌斯反演+树状数组)

    BUPT2017 wintertraining(15) #5H HDU- 4947 题意 有一个长度为l的数组,现在有m个操作,第1种为1 n d v,给下标x 满足gcd(x,n)=d的\(a_x\ ...

  2. HDU4947GCD Array(莫比乌斯反演+树状数组)

    题面 传送门 题解 orz ljz 相当于每一个数要加上 \[v\times [\gcd(i,n)=d]=v\times [\gcd(i/d,n/d)=1]=v\times \sum_{p|{i\ov ...

  3. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  4. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  5. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  6. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  7. 洛谷P3312 [SDOI2014]数表(莫比乌斯反演+树状数组)

    传送门 不考虑$a$的影响 设$f(i)$为$i$的约数和 $$ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^nf(gcd(i,j))$$ $$=\sum\limi ...

  8. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  9. 【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...

随机推荐

  1. 剑指offer笔记面试题8----二叉树的下一个节点

    题目:给定一棵二叉树和其中的一个节点,如何找出中序遍历序列的下一个节点?树中的节点除了有两个分别指向左.右子节点的指针,还有一个指向父节点的指针. 测试用例: 普通二叉树(完全二叉树,不完全二叉树). ...

  2. 【实习第十天】odoo开发基础整合

    前言 发文时间是2019年7月19日.提一下学习odoo的感受,odoo目前在国内并不是很流行,且主流是在企业型软件,所以导致目前odoo在网上的文献很少,学习相对来说比其他框架吃力.以下为大家总结1 ...

  3. vim简单操作命令

    vim简单操作命令: 开启编辑:按“i”或者“Insert”键 退出编辑:“Esc”键 退出vim:“:q” 保存vim:“:w” 保存退出vim:“:wq” 不保存退出vim:“:q!” 查看当前系 ...

  4. TCP/IP网络协议初识

    目录 一.什么是协议? 二.什么是TCP/IP协议? 三.TCP/IP为什么这么多协议? 四.TCP/IP协议为什么分层? 五.TCP/IP协议如何入门? 六.TCP/IP 的分层: 七.各协议层打包 ...

  5. "(error during evaluation)" computed

    在vue-cli搭建的去哪网app项目中使用了  computed  计算属性 computed计算属性在chrome插件中的 vue devtools 插件中报错 应该显示出来 computed 属 ...

  6. Linux系统学习 二十一、SAMBA服务—相关文件、配置文件详解

    3.相关文件 常用文件: /etc/samba/smb.conf      #配置文件 /etc/samba/lmhosts        #对应NetBIOS名与主机的IP的文件,一般Samba会自 ...

  7. Office2019新增哪些功能

    上一篇文章我们知道了office为什么没有2017/2018版本,那个是因为微软office是时隔三年一更新的软件,这不office2019就出来了.一款软件,只有不断的完善自身功能,进行不断的更新, ...

  8. ResultSet RS_resultxtgg=connDbBean.executeQuery(sqlxtgg);

    <%String sqlxtgg="select * from dx where leibie='系统公告'"; ResultSet RS_resultxtgg=connDb ...

  9. vscode 启动

    code --user-data-dir /root/vscode code --user-data-dir /root/vscode

  10. SpringBootJPA实现增删改查

    一.目录展示 二.导入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifac ...