Linux中自旋锁
传统的spinlock
Linux的的内核最常见的锁是自旋锁。自旋锁最多只能被一个可执行线程持有。如果一个执行线程试图获得一个被已经持有(争用)的自旋锁,那么该线程就会一直进行忙循环-旋转-等待锁重新可用要是锁未被争用,请求锁的执行线程就可以立即得到它,继续执行。在任意时间,自旋锁都可以防止多于一个的执行线程同时进入临界区。同一个锁可以用在多个位置,例如,对于给定数据的所有访问都可以得到保护和同步。
自旋锁在同一时刻至多被一个执行线程持有,所以一个时刻只有一个线程位于临界区内,这就为多处理器机器提供了防止并发访问所需的保护机制。在单处理机器上,编译的时候不会加入自旋锁,仅会被当作一个设置内核抢占机制是否被启用的开关。如果禁止内核抢占,那么在编译时自旋锁就会被剔除出内核。
传统的自旋锁本质上用一个整数来表示,值为1代表锁未被占用, 为0或者为负数表示被占用。
在单处理机环境中可以使用特定的原子级汇编指令swap和test_and_set实现进程互斥,(Swap指令:交换两个内存单元的内容;test_and_set指令取出内存某一单元(位)的值,然后再给该单元(位)赋一个新值) 这些指令涉及对同一存储单元的两次或两次以上操作,这些操作将在几个指令周期内完成,但由于中断只能发生在两条机器指令之间,而同一指令内的多个指令周期不可中断,从而保证swap指令或test_and_set指令的执行不会交叉进行.
在多处理机环境中情况有所不同,例如test_and_set指令包括“取”、“送”两个指令周期,两个CPU执行test_and_set(lock)可能发生指令周期上的交叉,假如lock初始为0, CPU1和CPU2可能分别执行完前一个指令周期并通过检测(均为0),然后分别执行后一个指令周期将lock设置为1,结果都取回0作为判断临界区空闲的依据,从而不能实现互斥.
为在多CPU环境中利用test_and_set指令实现进程互斥,硬件需要提供进一步的支持,以保证test_and_set指令执行的原子性. 这种支持目前多以“锁总线”(bus locking)的形式提供的,由于test_and_set指令对内存的两次操作都需要经过总线,在执行test_and_set指令之前锁住总线,在执行test_and_set指令后开放总线,即可保证test_and_set指令执行的原子性。
typedef struct { /** * 该字段表示自旋锁的状态,值为1表示未加锁,任何负数和0都表示加锁 */ volatile unsigned int slock; #ifdef CONFIG_DEBUG_SPINLOCK unsigned magic; #endif #ifdef CONFIG_PREEMPT /** * 表示进程正在忙等待自旋锁。 * 只有内核支持SMP和内核抢占时才使用本标志。 */ unsigned int break_lock; #endif } spinlock_t;
加锁
/** * 当内核不可抢占时,spin_lock的实现过程。 */ #define _spin_lock(lock) \ do { \ /** * 调用preempt_disable禁用抢占。 */ preempt_disable(); \ /** * _raw_spin_lock对自旋锁的slock字段执行原子性的测试和设置操作。 */ _raw_spin_lock(lock); \ __acquire(lock); \ } ) #define _raw_spin_lock(x) \ do { \ CHECK_LOCK(x); \ if ((x)->lock&&(x)->babble) { \ (x)->babble--; \ printk("%s:%d: spin_lock(%s:%p) already locked by %s/%d\n", \ __FILE__,__LINE__, (x)->module, \ (x), (x)->owner, (x)->oline); \ } \ (x)->; \ (x)->owner = __FILE__; \ (x)->oline = __LINE__; \ } )
解锁
#define _spin_unlock(lock) \ do { \ _raw_spin_unlock(lock); \ preempt_enable(); \ __release(lock); \ } ) static inline void _raw_spin_unlock(spinlock_t *lock) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(lock->magic != SPINLOCK_MAGIC); BUG_ON(!spin_is_locked(lock)); #endif __asm__ __volatile__( spin_unlock_string ); } //在spin_unlock_string中,%0即为锁 - > s 锁,movb指令将锁 - > s 锁定为1,movb指令本身就是原子操作,所以不需要锁总线。 #define spin_unlock_string \ "movb $1,%0" \ :"=m" (lock->slock) : : "memory"
ticket spinlock
Linux 内核 2.6.25 版本中引入了排队自旋锁:通过保存执行线程申请锁的顺序信息来解决“不公平”问题。
排队自旋锁仍然使用原有的 raw_spinlock_t 数据结构,但是赋予 slock 域新的含义。为了保存顺序信息,slock 域被分成两部分,分别保存锁持有者和未来锁申请者的票据序号(Ticket Number),如下图所示:
只有 Next 域与 Owner 域相等时,才表明锁处于未使用状态(此时也无人申请该锁)。排队自旋锁初始化时 slock 被置为 0,即 Owner 和 Next 置为 0。内核执行线程申请自旋锁时,原子地将 Next 域加 1,并将原值返回作为自己的票据序号。如果返回的票据序号等于申请时的 Owner 值,说明自旋锁处于未使用状态,则直接获得锁;否则,该线程忙等待检查 Owner 域是否等于自己持有的票据序号,一旦相等,则表明锁轮到自己获取。线程释放锁时,原子地将 Owner 域加 1 即可,下一个线程将会发现这一变化,从忙等待状态中退出。线程将严格地按照申请顺序依次获取排队自旋锁,从而完全解决了“不公平”问题。
ticket spinlock数据结构
typedef struct arch_spinlock { union { __ticketpair_t head_tail; struct __raw_tickets { __ticket_t head, tail; } tickets; }; } arch_spinlock_t;
申请自旋锁时,原子地将tail加1,释放时,head加1。只有head域和tail域的值相等时,才表明锁处于未使用的状态。
加锁
static inline void __raw_spin_lock(raw_spinlock_t *lock) { asm volatile("\n1:\t" LOCK_PREFIX " ; decb %0\n\t" "jns 3f\n" "2:\t" "rep;nop\n\t" "cmpb $0,%0\n\t" "jle 2b\n\t" "jmp 1b\n" "3:\n\t" : "+m" (lock->slock) : : "memory"); }
解锁
static inline void __raw_spin_unlock(raw_spinlock_t *lock) { asm volatile("movb $1,%0" : "+m" (lock->slock) :: "memory"); }
不足:
在大规模多处理器系统和 NUMA系统中,排队自旋锁(包括传统自旋锁)存在一个比较严重的性能问题:由于执行线程均在同一个共享变量 slock 上自旋,申请和释放锁的时候必须对 slock 进行修改,这将导致所有参与排队自旋锁操作的处理器的缓存变得无效。如果排队自旋锁竞争比较激烈的话,频繁的缓存同步操作会导致繁重的系统总线和内存的流量,从而大大降低了系统整体的性能。
mcs spinlock
核心思想是:每个锁的申请者(处理器)只在一个本地变量上自旋。MCS Spinlock是其中一种基于链表结构的自旋锁。
MCS Spinlock的设计目标如下:
- 保证自旋锁申请者以先进先出的顺序获取锁(FIFO Ordering)。
- 只在本地可访问的标志变量上自旋。
- 在处理器个数较少的系统中或锁竞争并不激烈的情况下,保持较高性能。
- 自旋锁的空间复杂度(即锁数据结构和锁操作所需的空间开销)为常数。
- 在没有处理器缓存一致性协议保证的系统中也能很好地工作。
MCS Spinlock采用链表结构将全体锁申请者的信息串成一个单向链表,如图 1 所示。每个锁申请者必须提前分配一个本地结构 mcs_lock_node,其中至少包括 2 个域:本地自旋变量 waiting 和指向下一个申请者 mcs_lock_node 结构的指针变量 next。waiting 初始值为 1,申请者自旋等待其直接前驱释放锁;为 0 时结束自旋。而自旋锁数据结构 mcs_lock 是一个永远指向最后一个申请者 mcs_lock_node 结构的指针,当且仅当锁处于未使用(无任何申请者)状态时为 NULL 值。MCS Spinlock 依赖原子的“交换”(swap)和“比较-交换”(compare_and_swap)操作,缺乏后者的话,MCS Spinlock 就不能保证以先进先出的顺序获取锁,从而可能造成“饥饿”(Starvation)。
版本1:每个锁有NR_CPUS大的node数组, mcs_lock_node 结构可以在处理器所处节点的内存中分配,从而加快访问速度.
typedef struct _mcs_lock_node { volatile int waiting; struct _mcs_lock_node *volatile next; } ____cacheline_aligned_in_smp mcs_lock_node; typedef mcs_lock_node *volatile mcs_lock; typedef struct { mcs_lock slock; mcs_lock_node nodes[NR_CPUS]; } raw_spinlock_t;
spin_lock(&lock)
spin_unlock(&lock)
版本2:
spin_lock(&lock, &node);
spin_unlock(&lock, &node);
加锁
static __always_inline void __raw_spin_lock(raw_spinlock_t *lock) { int cpu; mcs_lock_node *me; mcs_lock_node *tmp; mcs_lock_node *pre; cpu = raw_smp_processor_id(); (a) me = &(lock->nodes[cpu]); tmp = me; me->next = NULL; pre = xchg(&lock->slock, tmp); (b) if (pre == NULL) { /* mcs_lock is free */ return; (c) } me->waiting = ; (d) smp_wmb(); (e) pre->next = me; (f) while (me->waiting) { (g) asm volatile (“pause”); } } static __always_inline int __raw_spin_trylock(raw_spinlock_t *lock) { int cpu; mcs_lock_node *me; cpu = raw_smp_processor_id(); me = &(lock->nodes[cpu]); me->next = NULL; if (cmpxchg(&lock->slock, NULL, me) == NULL) (a) ; else ; }
解锁
static __always_inline void __raw_spin_unlock(raw_spinlock_t *lock) { int cpu; mcs_lock_node *me; mcs_lock_node *tmp; cpu = raw_smp_processor_id(); me = &(lock->nodes[cpu]); tmp = me; if (me->next == NULL) { (a) if (cmpxchg(&lock->slock, tmp, NULL) == me) { (b) /* mcs_lock I am the last. */ return; } while (me->next == NULL) (c) continue; } /* mcs_lock pass to next. */ me->next->waiting = ; (d) }
不足:
版本1的mcs spinlock 锁占用空间大
版本二的mcs spinlock 使用时需要传入mode, 和之前的spinlock api不兼容,无法替换ticket spinlock.
qspinlock
qspinlock 是内核4.2引入的,主要基于mcs spinlock的设计思想,解决了mcs spinlock接口不一致或空间太大的问题。它的数据结构体比mcs lock大大减小, 同ticket spinlock一样大小。qspinlock的等待变量是全局变量。
qspinlock的数据结构定义在kernel/qspinlock.c中 struct __qspinlock { union { atomic_t val; #ifdef __LITTLE_ENDIAN struct { u8 locked; u8 pending; }; struct { u16 locked_pending; u16 tail; }; #else struct { u16 tail; u16 locked_pending; }; struct { u8 reserved[]; u8 pending; u8 locked; }; #endif
具体位域
/* * Bitfields in the atomic value: * * When NR_CPUS < 16K * 0- 7: locked byte * 8: pending * 9-15: not used * 16-17: tail index * 18-31: tail cpu (+1) * * When NR_CPUS >= 16K * 0- 7: locked byte * 8: pending * 9-10: tail index * 11-31: tail cpu (+1) */
static __always_inline void queued_spin_lock(struct qspinlock *lock) { u32 val; val = atomic_cmpxchg_acquire(&, _Q_LOCKED_VAL); )) return; queued_spin_lock_slowpath(lock, val); }
qspinlock采用mcs lock的机制, 每一个cpu都定义有一个strcut mcs spinlock的数据结构在大规模多处理器系统和 NUMA系统中, 使用qspinlock 可以较好的提高锁的性能。
Linux中自旋锁的更多相关文章
- linux内核--自旋锁的理解
http://blog.chinaunix.net/uid-20543672-id-3252604.html 自旋锁:如果内核配置为SMP系统,自旋锁就按SMP系统上的要求来实现真正的自旋等待,但是对 ...
- linux内核自旋锁API
我们大概都了解,锁这种机制其实是为了保护临界区代码的,关于使用和定义,我总结的API如下: #include <linux/spinlock.h> 定义自旋锁 spinlock_t loc ...
- LINUX内核笔记:自旋锁
目录 自旋锁作用与基本使用方法? 在SMP和UP上的不同表现? 自旋锁与上下文 使用spin_lock()后为什么不能睡眠? 强调:锁什么? 参考 1.自旋锁作用与基本使用方法? 与其他锁一样,自 ...
- Linux内核同步:自旋锁
linux内核--自旋锁的理解 自旋锁:如果内核配置为SMP系统,自旋锁就按SMP系统上的要求来实现真正的自旋等待,但是对于UP系统,自旋锁仅做抢占和中断操作,没有实现真正的“自旋”.如果配置了CON ...
- linux 自旋锁和信号量【转】
转自:http://blog.csdn.net/xu_guo/article/details/6072823 版权声明:本文为博主原创文章,未经博主允许不得转载. 自旋锁最多只能被一个可执行线程持有( ...
- 浅谈Linux中的各种锁及其基本原理
本文首发于:https://mp.weixin.qq.com/s/Ahb4QOnxvb2RpCJ3o7RNwg 微信公众号:后端技术指南针 0.概述 通过本文将了解到如下内容: Linux系统的并行性 ...
- Linux中的各种锁及其基本原理
Linux中的各种锁及其基本原理 1.概述 通过本文将了解到如下内容: Linux系统的并行性特征 互斥和同步机制 Linux中常用锁的基本特性 互斥锁和条件变量 2.Linux的并行性特征 Linu ...
- Linux组件封装(一)中互斥锁MutexLock的封装
本文对Linux中的pthread_mutex_t做一个简易的封装. 互斥锁主要用于互斥,互斥是一种竞争关系,主要是某一个系统资源或一段代码,一次做多被一个线程访问. 条件变量主要用于同步,用于协调线 ...
- 菜鸟nginx源代码剖析数据结构篇(十) 自旋锁ngx_spinlock
菜鸟nginx源代码剖析数据结构篇(十) 自旋锁ngx_spinlock Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.cs ...
随机推荐
- 向busybox中添加自己的applet
关键词:buysbox.applet等. busybox常用于嵌入式环境,集成中断Linux命令和工具.这些工具简单高效. 下面从如下方面了解: 这些命令是一个软链接到busybox,那么是如何从软连 ...
- 手机号码生成器app有吗,怎么使用的呢?
手机号码生成器app是有的,他有手机号码生成器安卓版,也有手机号码生成器苹果版的.很多人会误解他的功能以为是拿来生成号码来接验证码的,其实他不是拿来接短信的.它是用来给别人做营销找客沪的找客源的,接不 ...
- MATLAB实例:将批量的图片保存为.mat文件
MATLAB实例:将批量的图片保存为.mat文件 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.彩色图片 图片数据:horse.rar 1. MA ...
- misc-3-1
无后缀,用winhex发现是rar,添加后缀解压,依据是无后缀,丢到kali,是一个流量数据包 TCP追踪流在第五个数据包发现flag.rar 导出对象 选择HTTP 找到flag.rar 然后丢到你 ...
- linux umask计算方法
1. umask用于设定默认的新建文件或目录的权限 查看umask当前值命令: umask -p 计算创建出的file权限方法: 如果umask值的每位数都是偶数,使用666按位减umask的值即可 ...
- SQL Server字符串函数STUFF的使用
前言: 最近有个实践练习是将学生报名数据表student中的[st_id]字段的第二个和第三个字符删除,然后在此位置插入新的字符串“200900”,其实就是替换的意思,生成新的字符串. STUFF 函 ...
- 使用ScriptX控件实现IE浏览器分页打印功能
之前讲过js调用ie浏览器自带打印的用法,今天讲使用插件的方式.浏览器自带打印不能控制页边距.页眉页脚等选项,尤其是如果分页打印的话,无法自动将前一页标题带到本页,所以不适用多页打印的功能.使用Scr ...
- Springboot 打包自带启动脚本
一直以来,我都是 gradlew build java -jar xxx.jar 来启动springboot项目的.今天突然发现,springboot自动封装了一个bootJar的任务脚本. demo ...
- make 命令与 Makefile
make 是一个工具程序,通过读取 Makefile 文件,实现自动化软件构建.虽然现代软件开发中,集成开发环境已经取代了 make,但在 Unix 环境中,make 仍然被广泛用来协助软件开发.ma ...
- IDEA maven设置配置
IDEA Maven配置 1. 下载maven 下载地址 从官网上,下载一个压缩包,然后解压到任意的文件夹 Maven的安装必须需要jdk1.7+ 2. 环境变量设置 M2_HOME改为具体的路径,其 ...