pointcnn
这篇论文先举例子解释了为什么卷积无法直接应用在点云数据上。
如图1, 传统的卷积是作用在2维图像数据上。图像中每个像素的顺序是固定的,也就是说数据是结构化存储的。直接使用conv2d就能从这种潜在的空间结构中获取信息。
而点云数据是点集,如果直接使用卷积会出现图中234多种情况
若直接使用卷积,则f2与f3的计算结果是相等的,但是从图中可知,23显示不同,这说明卷积无法获得点的空间信息
而f3与f4的计算结果不等,但是图3与图4是相同的点集,必须得到相同的计算结果才合理,这说明卷积无法适应点集的N!种排列。
在其他论文里,为了适应点云数据的这两种的特点采取的方式有体素化、3DCNN及PointNet提的对称操作(symmetric,这个翻译是我自己译的)
版权声明:本文为CSDN博主「Link2Link」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_15602569/article/details/79560614
卷积神经网络(Conv)能够很好利用原始数据的在空间上的局部相关性(Spatially-local correlation),这也正是卷积神经网络在各种分割或者分类任务中取得成功的关键。正是如此,作者设想是否能效仿卷积神经网络来很好的利用点云(Point Cloud)的空间上的局部相关性,这将在点云分割和分类上取得很大的成功。所以这篇文章的重点就在于怎么利用这种相关性。
版权声明:本文为CSDN博主「JMU-HSF」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42956785/article/details/86586513
首先,根据采样得到的中心点,将全局坐标变为局部坐标,相当于分区。(点的数量如何确定?)
o 利用MLP将每个点变换到高维空间(一维卷积),得到F-sigma
o Concat特征F(输入的每个点的附加特征,比如color或者normal)和F-sigma,得到新的特征F*
o 对每个局部区域中的点使用MLP,得到变换矩阵X。这里可以注意一下,得到变换矩阵X的过程,输入是P'(一组坐标点),输出是变换矩阵X。文中的消除实验表明,X变换的确是有效果的
o 对特征F*使用X进行变换后,在进行传统的卷积(1维)。作者是希望通过X变换,把特征F*变成空间相关,也就是希望矩阵中相邻的在空间中也相邻,这样就可以像图像一样卷积了。
作者:摸鱼家
链接:https://zhuanlan.zhihu.com/p/89752154
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
https://blog.csdn.net/qq_33278989/article/details/80047252
pointcnn的更多相关文章
- PointCNN 论文翻译解析
1. 前言 卷积神经网络在二维图像的应用已经较为成熟了,但 CNN 在三维空间上,尤其是点云这种无序集的应用现在研究得尤其少.山东大学近日公布的一项研究提出的 PointCNN 可以让 CNN 在点云 ...
- 论文笔记:(NIPS2018)PointCNN: Convolution On X-Transformed Points
目录 摘要 一.2D卷积应用在点云上存在的问题 二.解决的方法 2.1 idea 2.2 X-conv算子 2.3 分层卷积 三.实验 3.1分类和分割 3.2消融实验.可视化和模型复杂度 总结 仍存 ...
- 3D点云的深度学习
使用卷积神经网络(CNN)架构的深度学习(DL)现在是解决图像分类任务的标准解决方法.但是将此用于处理3D数据时,问题变得更加复杂.首先,可以使用各种结构来表示3D数据,所述结构包括: 1 体素网格 ...
- 转载:点云上实时三维目标检测的欧拉区域方案 ----Complex-YOLO
感觉是机器翻译,好多地方不通顺,凑合看看 原文名称:Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection ...
- CVPR2020:4D点云语义分割网络(SpSequenceNet)
CVPR2020:4D点云语义分割网络(SpSequenceNet) SpSequenceNet: Semantic Segmentation Network on 4D Point Clouds 论 ...
- CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL)
CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL) PointASNL: Robust Point Clouds Processing Using Nonlocal N ...
- CVPR2020:三维点云无监督表示学习的全局局部双向推理
CVPR2020:三维点云无监督表示学习的全局局部双向推理 Global-Local Bidirectional Reasoning for Unsupervised Representation L ...
- 论文笔记:(2021CVPR)PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
目录 摘要 1.引言 2.相关工作 将点云映射到常规二维或三维栅格(体素) 基于MLPs的点表示学习 基于点卷积的点表示学习 动态卷积和条件卷积 3.方法 3.1 回顾 3.2 动态内核组装 Weig ...
- 论文笔记:(2019)GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud
目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 ...
随机推荐
- Less(2)
1.先判断注入类型 (1)首先看到要求,要求传一个ID参数,并且要求是数字型的:?id=1 (2)输入?id=1' and 1=1 出现错误 (3)输入 ?id=1 and 1=1 页面显示正常 (4 ...
- AHOI 2009 维护序列
洛谷 P2023 [AHOI2009]维护序列 洛谷传送门 题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,-,aN .有如下三种操作形式 ...
- Codeforces Round #594 (Div. 1)
Preface 这场CF真是细节多的爆炸,B,C,F都是大细节题,每道题都写了好久的说 CSP前的打的最后一场比赛了吧,瞬间凉意满满 希望CSP可以狗住冬令营啊(再狗不住真没了) A. Ivan th ...
- __doc__
目录 一.__doc__ 一.__doc__ 返回类的注释信息 class Foo: '我是描述信息' pass print(Foo.__doc__) 我是描述信息 该属性无法被继承 class Fo ...
- es6一句话拾遗
Symbol最大的作用就是用于消除魔术字符串: Set跟数组的最大区别,就是Set的成员都是唯一的,没有重复:(方法:add(value),has,delete,clear) Map跟对象的最大区别, ...
- 1+x 证书 Web 前端开发中级理论考试(试卷 6 )
1+x 证书 Web 前端开发中级理论考试(试卷 6 ) 官方QQ群 1+x 证书 web 前端开发初级对应课程分析 http://blog.zh66.club/index.php/archives/ ...
- 【2016NOI十连赛2-2】黑暗
[2016NOI十连赛2-2]黑暗 题目大意:定义一个无向图的权值为连通块个数的\(m\)次方.求\(n\)个点的所有无向图的权值和.多次询问. 数据范围:\(T\leq 1000,n\leq 300 ...
- 一个有用的排序函数,array_multisort(),下面的一个用法是根据二维数组里的一个字段值的大小,对该二维数组进行重新排序
从二维数组$cashes中取出一列 'store_id'(二维数组中的每个一维数组都有的字段),按照这个的大小排序,对二维数组$caches里面的一维数组进行重新排序 实际应用如下 想让相同部门的排在 ...
- spring cloud 项目创建过程
在使用spring cloud 项目创建微服务项目时,遇到过很多坑,现在我将整理如下: 条件:Idea 开发工具 maven 项目 1. 创建一个空的mvn项目. 2. 创建完了就添加Module,首 ...
- Python爬取猪肉价格网并获取Json数据
场景 猪肉价格网站: http://zhujia.zhuwang.cc/ 注: 博客: https://blog.csdn.net/badao_liumang_qizhi 关注公众号 霸道的程序猿 获 ...