传送门

题意:

现有一个\(0\)到\(n-1\)的排列\(T\),定义距离\(D(x,y)=min\{|x-y|,N-|x-y|\}\)。

现在给出\(D(i, T_i)\),输出字典序最小的符合条件的排列\(T\)。

思路:

  • 将问题转化为二分图匹配,左边的点表示位置,右边的点表示值。
  • 那么现在就是要找一个使得最终字典序最小的排列。
  • 从后往前逐一匹配即可。

主要考察对匈牙利算法的理解程度,前面位置小的肯定选择小的最后,但如果一开始给匹配了,后面的来进行匹配会直接强行插入,可能会使得答案不优。

从后往前即可使得位置越靠前,值最小。

/*
* Author: heyuhhh
* Created Time: 2019/11/7 13:53:56
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 10005; int n;
int res[N];
vector <int> g[N];
int match[N], vis[N], T; int dfs(int u) {
for(auto v : g[u]) {
if(vis[v] != T) {
vis[v] = T;
if(match[v] == -1 || dfs(match[v])) {
match[v] = u;
return 1;
}
}
}
return 0;
} void run(){
for(int i = 1; i <= n; i++) {
int d; cin >> d;
int l = i - d, r = i + d;
if(l < 1) l += n;
if(r > n) r -= n;
if(l > r) swap(l, r);
g[i].push_back(l);
if(r != l) g[i].push_back(r);
}
int ans = 0;
memset(match, -1, sizeof(match));
for(int i = n; i >= 1; i--) {
++T; ans += dfs(i);
}
if(ans < n) cout << "No Answer" << '\n';
else {
for(int i = 1; i <= n; i++) res[match[i]] = i;
for(int i = 1; i <= n; i++) cout << res[i] - 1 << " \n"[i == n];
}
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> n) run();
return 0;
}

【洛谷P1963】[NOI2009]变换序列(二分图匹配)的更多相关文章

  1. Luogu P1963 [NOI2009]变换序列(二分图匹配)

    P1963 [NOI2009]变换序列 题意 题目描述 对于\(N\)个整数\(0,1, \cdots ,N-1\),一个变换序列\(T\)可以将\(i\)变成\(T_i\),其中\(T_i \in ...

  2. 洛谷 [P1963] [NOI2009] 变换序列

    这是一道二分图匹配的题 先%dalao博客 建图并没有什么难的,但是关键在于如何使字典序最小. 一个很显然的想法是先求出一个完美匹配,然后从x集合的第一个元素开始,如果该元素匹配的较小的一个,那么继续 ...

  3. 洛谷P1963 [NOI2009]变换序列(二分图)

    传送门 我可能真的只会网络流……二分图的题一点都做不来…… 首先每个位置有两种取值,所以建一个二分图,只要有完美匹配就说明有解 考虑一下每一个位置,分别让它选择两种取值,如果都不能形成完美匹配,说明无 ...

  4. 【BZOJ1562】【jzyzOJ1730】【COGS409】NOI2009变换序列 二分图匹配

    [问题描述]        对于N个整数0, 1, ……, N-1,一个变换序列T可以将i变成Ti,其中 定义x和y之间的距离.给定每个i和Ti之间的距离D(i,Ti), 你需要求出一个满足要求的变换 ...

  5. 【洛谷P1963】变换序列

    题目大意:对于一个顺序序列,求一个合法置换,可以满足一些约束,若存在多个合法置换,则输出字典序最小的一个置换. 题解:对于序列的置换是否有解的问题,可以和二分图的完美匹配相关联.由于是字典序最小,显然 ...

  6. P1963 [NOI2009]变换序列

    对于\(N\)个整数\(0, 1, \cdots, N-1,\)一个变换序列\(T\)可以将\(i\)变成\(T_i\),其中 \(T_i \in \{ 0,1,\cdots, N-1\}\)且 \( ...

  7. P1963 [NOI2009]变换序列 倒叙跑匈牙利算法

    题意 构造一个字典序最小的序列T,使得 Dis(i, Ti) = di,其中i是从0开始的,Dis(x,y)=min{∣x−y∣,N−∣x−y∣} ,di由题目给定. 思路 二分图匹配,把左边的看成i ...

  8. 洛谷 P3386 【模板】二分图匹配

    题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每行两个正整数u,v,表示u,v有一条连边 ...

  9. 洛谷—— P3386 【模板】二分图匹配

    P3386 [模板]二分图匹配(复习) 题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每 ...

  10. 洛谷 P3386 【模板】二分图匹配 Dinic版

    题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每行两个正整数u,v,表示u,v有一条连边 ...

随机推荐

  1. SPA项目开发之登录

    前端 首先安装开发模板 npm install element-ui -S npm install axios -S npm install qs -S npm install vue-axios - ...

  2. QT新建空白项目-添加QT设计师界面类时出现的各种库无法导入识别

    按照教材上先新建一个空的项目--添加Qt设计师界面类时 出现各种 库无法识别 解决方法: 在 .pro文件中加入一行 QT += widgets 去构建中先执行 qmake 然后再构建一下  ok了 ...

  3. nginx学习(四):nginx处理web请求机制

    worker抢占机制 如下图所示,如果有一个请求,各个work进程会进行争锁.谁抢到是谁的.需要注意Nginx 所有worker进程协同工作的关键(共享内存). [accept_mutex的介绍] 当 ...

  4. Codeforces Round #597 (Div. 2) F. Daniel and Spring Cleaning 数位dp

    F. Daniel and Spring Cleaning While doing some spring cleaning, Daniel found an old calculator that ...

  5. 基于Django的Rest Framework框架的响应器

    本文目录 一 作用 二 内置渲染器 三 局部使用 四 全局使用 五 自定义显示模版 回到目录 一 作用 根据 用户请求URL 或 用户可接受的类型,筛选出合适的 渲染组件.用户请求URL:    ht ...

  6. Spring Boot 2.2.0新特性

    Spring Boot 2.2.0 正式发布了,可从 repo.spring.io 或是 Maven Central 获取. 性能提升   Spring Boot 2.2.0 的性能获得了很大的提升. ...

  7. DatabaseLibrary -数据库操作

    操作数据库: Table Must Exist 验证表必须存在,存在则Pass,反之Fail Delete All Rows From Table 删除数据库中表的所有行 Execute Sql St ...

  8. 【51Nod1584】加权约数和(数论)

    [51Nod1584]加权约数和(数论) 题面 51Nod 题解 要求的是\[\sum_{i=1}^n\sum_{j=1}^n max(i,j)\sigma(ij)\] 这个\(max\)太讨厌了,直 ...

  9. Spring5源码解析1-从启动容器开始

    从启动容器开始 最简单的启动spring的代码如下: @Configuration @ComponentScan public class AppConfig { } public class Mai ...

  10. 采用邻接矩阵表示图的深度优先搜索遍历(与深度优先搜索遍历连通图的递归算法仅仅是DFS的遍历方式变了)

    //采用邻接矩阵表示图的深度优先搜索遍历(与深度优先搜索遍历连通图的递归算法仅仅是DFS的遍历方式变了) #include <iostream> using namespace std; ...