因为题中的操作是区间加法,所以满足前缀相减性.

而每一次查询的时候还是单点查询,所以直接用可持久化线段树维护差分数组,然后查一个前缀和就行了.

code:

#include <bits/stdc++.h>
#define N 200004
#define LL long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n,m,q,tot,rt[N];
LL val[N];
int newnode() { return ++tot; }
struct node { int ls,rs; LL sum;}t[N*50];
void build(int &now,int l,int r)
{
now=newnode();
if(l==r) return ;
int mid=(l+r)>>1;
if(l<=mid) build(t[now].ls,l,mid);
if(r>mid) build(t[now].rs,mid+1,r); }
int update(int p,int l,int r,int pos,int v)
{
int now=newnode();
t[now]=t[p];
t[now].sum=t[p].sum+1ll*v;
if(l==r) return now;
int mid=(l+r)>>1;
if(pos<=mid) t[now].ls=update(t[p].ls,l,mid,pos,v);
else t[now].rs=update(t[p].rs,mid+1,r,pos,v);
return now;
}
LL query(int now,int l,int r,int L,int R)
{
if(!now) return 0;
if(l>=L&&r<=R) return t[now].sum;
int mid=(l+r)>>1;
LL re=0ll;
if(L<=mid) re+=query(t[now].ls,l,mid,L,R);
if(R>mid) re+=query(t[now].rs,mid+1,r,L,R);
return re;
}
int main()
{
// setIO("input");
int i,j;
scanf("%d%d%d",&n,&m,&q);
for(i=1;i<=n;++i) scanf("%lld",&val[i]);
build(rt[0],1,n);
for(i=1;i<=m;++i)
{
int l,r,h;
scanf("%d%d%d",&l,&r,&h);
rt[i]=update(rt[i-1],1,n,l,h);
if(r<n) rt[i]=update(rt[i],1,n,r+1,-h);
}
for(i=1;i<=q;++i)
{
int opt;
scanf("%d",&opt);
if(opt==1)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
LL L=query(rt[x-1],1,n,1,z);
LL R=query(rt[y],1,n,1,z);
printf("%lld\n",R-L+val[z]);
}
else
{
int pos,p;
scanf("%d%d",&pos,&p);
val[pos]=1ll*p;
}
}
return 0;
}

  

luogu T96516 [DBOI2019]持盾 可持久化线段树+查分的更多相关文章

  1. luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树)(主席树)

    luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include< ...

  2. Luogu P3919 【模板】可持久化数组 可持久化线段树

    其实就是可持久化线段树的模板题线段树不会看这里 #include<bits/stdc++.h> ; using namespace std; ]; ],rc[N*],val[N*],cnt ...

  3. 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex

    题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...

  4. Luogu P3919【模板】可持久化数组(可持久化线段树/平衡树)

    题面:[模板]可持久化数组(可持久化线段树/平衡树) 不知道说啥,总之我挺喜欢自己打的板子的! #include<cstdio> #include<cstring> #incl ...

  5. 【Luogu P3834】可持久化数组(可持久化线段树)

    题目链接 可持久化线段树模板题. 这里总结一下可持久化线段树. 可持久化数据结构就是能恢复历史状态的数据结构,比如可持久化\(Trie\),并查集,平衡树. 可持久化数组是最基础的,这里通过可持久化线 ...

  6. 洛谷P3834 [模板]可持久化线段树1(主席树) [主席树]

    题目传送门 可持久化线段树1(主席树) 题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定 ...

  7. 【洛谷P3834】(模板)可持久化线段树 1(主席树)

    [模板]可持久化线段树 1(主席树) https://www.luogu.org/problemnew/show/P3834 主席树支持历史查询,空间复杂度为O(nlogn),需要动态开点 本题用一个 ...

  8. 【可持久化线段树?!】rope史上最全详解

    https://www.luogu.org/problemnew/show/P3919 看到上面链接中的题时,我在学会可持久化线段树的同时,第一次学会了一个非常屌(cai)的STL大法——rope!! ...

  9. 区间第K小——可持久化线段树模板

    概念 可持久化线段树又叫主席树,之所以叫主席树是因为这东西是fotile主席创建出来的. 可持久化数据结构思想,就是保留整个操作的历史,即,对一个线段树进行操作之后,保留访问操作前的线段树的能力. 最 ...

随机推荐

  1. GOF 的23种JAVA常用设计模式总结 02 UML中的类图与类图之间的关系

    统一建模语言UML 统一建模语言(Unified Modeling Language,UML)是用来设计软件蓝图的可视化建模语言,1997 年被国际对象管理组织(OMG)采纳为面向对象的建模语言的国际 ...

  2. RabbitMQ实战

    RabbitMQ消息队列 一.Hello World 1.amqp-client客户端依赖 2.Rabbitmq类与方法 二.交换机类型 Exchange Type 1.消息轮询分发(Round Ro ...

  3. 搭建SpriBoot开发环境

      一.搭建springboot开发环境 需求:使用springboot搭建一个项目,编写一个controller控制器,使用浏览器正常访问 springboot1.x版本--> 基于sprin ...

  4. cgal的安装、编译

    1.下载地址 https://www.cgal.org/2019/03/29/cgal414/ https://github.com/CGAL/cgal/releases/tag/releases%2 ...

  5. 浅谈Vue.js2.0某些概念

    Vue.js2.0是一套构建用户界面的渐进式框架,目标是实现数据驱动和组件系统.   A 渐进式框架 Vue.js是一个提供MVVM数据双向绑定的库,只专注于UI层面,这是它的核心.它本身没有解决SP ...

  6. 关于vue-svg-icon的使用方式

    前言 工作中用到svg格式的图标,既然是svg,当然不想用古老的img方式引用,希望能凭借定义svg的fill属性,随意定义图标的颜色:同时不想将整段svg代码写入组建内,于是找到了使用vue-svg ...

  7. C语言的三套标准 C89(C90)、C99、C11

    C语言最初由 Dennis Ritchie 于 1969 年到 1973 年在 AT&T 贝尔实验室里开发出来,主要用于重新实现 Unix 操作系统.此时,C语言又被称为 K&R C. ...

  8. 本地ssh快速登录

    每次登录都要ssh -p wang@xx.xx.xx.xx 虽然做了公钥验证 https://www.cnblogs.com/php-linux/p/10795913.html 不需要输入密码,但是每 ...

  9. 编译安装php服务报错问题:configure: error: Cannot find libmysqlclient under /usr.

    在编译安装php服务时报错: checking for MSSQL support via FreeTDS... nochecking for MySQL support... yeschecking ...

  10. LInux-命令在后台运行

    在终端运行一个持续很久的命令,一旦开始运行这个终端就会等待命令结束,才能输入下个指令,所以可以让这种指令放到后台运行,终端可以继续执行新指令. 后台运行 这种命令要满足1.要运行一段时间2.不需要与用 ...