传送门

思路:

最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价。

那么转移方程就有:

\[dp(i,j)=min\{dp(k,j-1)+(sumT_i+S*j)*(sumC_i-sumC_k)\}
\]

为什么有个\(S*j\)呢,因为前面的批次启动会对后面的答案有影响。

但是分析复杂度是\(O(n^3)\)的,肯定不行。

考虑一下为什么需要第二个状态呢?是为了消除后效性,因为后面的状态不知道总共启动了几次。

但我们可以把费用提前计算,一次启动,那么对于后面所有的机器都会有贡献,我们提前把这个贡献算了,后面就可以不管这个了,也就是强制消除后效性

所以变换后的\(dp\)式子就为:

\[dp(i)=min\{dp(j)+sumT_i*(sumC_i-sumC_j)+S*(sumC_n-sum_j)\}
\]

其实这样已经可以通过洛谷的数据了,但这还不够!我们还可以优化。

观察\(dp\)式子,后面加上的部分为\(i,j\)相关变量的乘积形式,所以我们可以考虑斜率优化dp。

将\(i,j\)变量分离,有:

\[dp(j)=(s+sumT_i)*sumC_j+dp_i-sumT_i*sumC_i-s*sumC_n
\]

显然这个式子直接用队列维护一个斜率不断增加的下凸壳即可。

时间复杂度就为\(O(n)\)了。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5005, MOD = 1e9 + 7;
int n, s;
int sumt[N], sumc[N];
int q[N], dp[N];
int main() {
#ifdef heyuhhh
freopen("input.in", "r", stdin);
#else
ios::sync_with_stdio(false); cin.tie(0);
#endif
cin >> n >> s;
for(int i = 1; i <= n; i++) {
int t, c; cin >> t >> c;
sumt[i] = sumt[i - 1] + t;
sumc[i] = sumc[i - 1] + c;
}
int l = 1, r = 1; q[1] = 0;
for(int i = 1; i <= n; i++) {
while(l < r && dp[q[l + 1]] - dp[q[l]] <= (s + sumt[i]) * (sumc[q[l + 1]] - sumc[q[l]])) ++l;
dp[i] = dp[q[l]] - sumt[i] * sumc[q[l]] - s * sumc[q[l]] + sumt[i] * sumc[i] + s * sumc[n];
while(l < r && (dp[i] - dp[q[r]]) * (sumc[q[r]] - sumc[q[r - 1]]) <= (dp[q[r]] - dp[q[r - 1]]) * (sumc[i] - sumc[q[r]])) --r;
q[++r] = i;
}
cout << dp[n];
return 0;
}

洛谷P2365 任务安排(斜率优化dp)的更多相关文章

  1. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  2. 2018.07.09 洛谷P2365 任务安排(线性dp)

    P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  3. [洛谷 P2365] 任务安排 (线性dp)

    3月14日第二题!! 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  4. bzoj 2726 任务安排 斜率优化DP

    这个题目中 斜率优化DP相当于存在一个 y = kx + z 然后给定 n 个对点 (x,y)  然后给你一个k, 要求你维护出这个z最小是多少. 那么对于给定的点来说 我们可以维护出一个下凸壳,因为 ...

  5. [SDOI2012]任务安排 - 斜率优化dp

    虽然以前学过斜率优化dp但是忘得和没学过一样了.就当是重新学了. 题意很简单(反人类),利用费用提前的思想,考虑这一次决策对当前以及对未来的贡献,设 \(f_i\) 为做完前 \(i\) 个任务的贡献 ...

  6. 洛谷P2365 任务安排 [解法二 斜率优化]

    解法一:http://www.cnblogs.com/SilverNebula/p/5926253.html 解法二:斜率优化 在解法一中有这样的方程:dp[i]=min(dp[i],dp[j]+(s ...

  7. 洛谷 P2365 任务安排【dp】

    其实是可以斜率优化的但是没啥必要 设st为花费时间的前缀和,sf为Fi的前缀和,f[i]为分组到i的最小花费 然后枚举j转移,考虑每次转移都是把j到i分为一组这样意味着j及之后的都要增加s的时间,同时 ...

  8. BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 868  Solved: 236[Submit][Status ...

  9. [洛谷P2365] 任务安排

    洛谷题目链接:任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时 ...

随机推荐

  1. 【CF438D】The Child and Sequence(线段树)

    点此看题面 大致题意: 给你一个序列,让你支持区间求和.区间取模.单点修改操作. 区间取模 区间求和和单点修改显然都很好维护吧,难的主要是区间取模. 取模标记无法叠加,因此似乎只能暴力搞? 实际上,我 ...

  2. Solidity智能合约语言

    语言本身 ethereum官网 https://ethereum.org/zh/ 笔记 uint[] result = new uint[](3);   uint[] memory result = ...

  3. ASP.NET的MVC请求处理流程

    1.用户打开浏览器,在地址栏输入某个网址的URL并回车,浏览器便开始像该URL指定的服务器发起HTTP请求 .2.服务器的网站服务系统(IIS)接收到该请求,先检查自己是否认识该类请求,如果认识就直接 ...

  4. 动手学深度学习1- pytorch初学

    pytorch 初学 Tensors 创建空的tensor 创建随机的一个随机数矩阵 创建0元素的矩阵 直接从已经数据创建tensor 创建新的矩阵 计算操作 加法操作 转化形状 tensor 与nu ...

  5. C++:= delete

    = delete delete的由来 如之前提到的,在没有声明默认特殊成员函数的时候,编译器会自动帮我们补充,但有时候我们并不希望存在这些函数,比如:我们不希望某个类通过拷贝的方式实例化一个新的对象. ...

  6. IntelliJ IDEA 超实用使用技巧分享

    https://blog.csdn.net/weixin_38405253/article/details/102583954 知识点概览: 高效率配置 日常使用 必备快捷键(★★) 查找 跳转切换 ...

  7. MYSQL LIMIT 性能测试

    查询语句 # 普通表 SELECT * FROM test_page LIMIT m,n # 内存表 SELECT * FROM test_page_memory LIMIT m,n 总结 查询位置( ...

  8. Thinkpad S430 3364-A59 (笔记本型号)加内存条过程

    背景:13年初选购的本,目前使用发现卡得厉害,原装内存只有4G,遂寻思扩充内存. [1]准备工具 待准备工具明细: (1)螺丝刀 主要为了卸后盖的螺丝. (2)内存条 待增加的内存条,如下图: 说明一 ...

  9. docker系列之二:构建docker容器

    1.创建在FlaskApp/app中创建Flask项目: 2.生成web项目所需的运行环境:pip3 freeze > ../requirements.txt 3.编辑Dockerfile: # ...

  10. mongodb数据库环境配置

    数据是每一前端人员必定接触的一样,所有的数据都是后端来编写,如果自己想练习项目,却没有数据,而是写一些假数据,去编写,或者通过json-server搭建一个数据,今天我们就通过MongoDB来搭建一个 ...