Redis和MongoDB的区别以及应用场景
Redis和MongoDB的区别以及应用场景
项目中用的是MongoDB,但是为什么用其实当时选型的时候也没有太多考虑,只是认为数据量比较大,所以采用MongoDB。
最近又想起为什么用MongoDB,就查阅一下,汇总汇总:
之前也用过redis,当时是用来存储一些热数据,量也不大,但是操作很频繁。现在项目中用的是MongoDB,目前是百万级的数据,将来会有千万级、亿级。
就Redis和MongoDB来说,大家一般称之为Redis缓存、MongoDB数据库。这也是有道有理有根据的,
Redis主要把数据存储在内存中,其“缓存”的性质远大于其“数据存储“的性质,其中数据的增删改查也只是像变量操作一样简单;
MongoDB却是一个“存储数据”的系统,增删改查可以添加很多条件,就像SQL数据库一样灵活,这一点在面试的时候很受用。
Mongodb与Redis应用指标对比
MongoDB和Redis都是NoSQL,采用结构型数据存储。二者在使用场景中,存在一定的区别,这也主要由于
二者在内存映射的处理过程,持久化的处理方法不同。MongoDB建议集群部署,更多的考虑到集群方案,Redis
更偏重于进程顺序写入,虽然支持集群,也仅限于主-从模式。
指标 | MongoDB(v2.4.9) | Redis(v2.4.17) | 比较说明 |
---|---|---|---|
实现语言 | C++ | C/C++ | - |
协议 | BSON、自定义二进制 | 类Telnet | - |
性能 | 依赖内存,TPS较高 | 依赖内存,TPS非常高 | Redis优于MongoDB |
可操作性 | 丰富的数据表达、索引;最类似于关系数据库,支持丰富的查询语言 | 数据丰富,较少的IO | MongoDB优于Redis |
内存及存储 | 适合大数据量存储,依赖系统虚拟内存管理,采用镜像文件存储;内存占有率比较高,官方建议独立部署在64位系统(32位有最大2.5G文件限制,64位没有改限制) | Redis2.0后增加虚拟内存特性,突破物理内存限制;数据可以设置时效性,类似于memcache | 不同的应用角度看,各有优势 |
可用性 | 支持master-slave,replicaset(内部采用paxos选举算法,自动故障恢复),auto sharding机制,对客户端屏蔽了故障转移和切分机制 | 依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整个快照,无增量复制;不支持自动sharding,需要依赖程序设定一致hash机制 | MongoDB优于Redis;单点问题上,MongoDB应用简单,相对用户透明,Redis比较复杂,需要客户端主动解决。(MongoDB 一般会使用replica sets和sharding功能结合,replica sets侧重高可用性及高可靠性,而sharding侧重于性能、易扩展) |
可靠性 | 从1.8版本后,采用binlog方式(MySQL同样采用该方式)支持持久化,增加可靠性 | 依赖快照进行持久化;AOF增强可靠性;增强可靠性的同时,影响访问性能 | MongoDB优于Redis |
一致性 | 不支持事物,靠客户端自身保证 | 支持事物,比较弱,仅能保证事物中的操作按顺序执行 | Redis优于MongoDB |
数据分析 | 内置数据分析功能(mapreduce) | 不支持 | MongoDB优于Redis |
应用场景 | 海量数据的访问效率提升 | 较小数据量的性能及运算 | MongoDB优于Redis |
Redis和Mongodb应用场景
现在的分布式项目基本都会用到redis和mongodb,可是redis和mongdb到底有什么不同呢,今天我就基于我们公司的项目来具体介绍一下redis和mongodb的各自的应用场景。
首先我们这个项目中有两种应用场景:
场景一:要求TPS(不知道的右转百度)特别高的,比如我们项目有一个点赞的功能,这个点赞的功能促发频率特别高,而且并发量也会特别大,但是它的数据量不会特别大。基于这种情况下,我们采用redis来实现点赞功能。
场景二:项目中涉及评论的内容,而且这个评论表的数据后期会非常大(海量的数据),最后在数据量非常大的情况下还要求比较复杂的查询。基于上述这些情况,我们采用mongodb作为评论表存储数据库。
应用升级:
现在在给大家介绍一下我们项目中关于redis和mongodb深入的应用,我们接着上面的应用场景继续往下说。下面我们接着深入上面的这两个场景,例如下面的这两个场景:
场景一:比如我们上面说到的场景一中点赞这个行为,因为我们项目对点赞这个数据的安全性要求特别高,而且取消点赞的过程种会涉及其它关联的操作,而且必须保证是线程是安全的,最重要的是我们需要redis高可用性,不能轻易的挂掉。这个时候我们就用到了redis中数据持久化和分布式锁的内容了,通过redis数据持久化,我们可以将缓存的数据保存到本地中来。利用redis分布式锁,我们可以控制取消点赞数据安全问题。关于高可用性的话,我们可以采用redis集群来实现,redis集群我们采用rediscluster来实现,这样我们就可以实现点赞这种场景的所有要求了。
场景二:我们接着评论表的内容,刚开始评论表可能数据不是特别大,可是随着时间的增长,评论表的数据会越来越大,但是我们查询的时间要控制在一段的间内,不能太久才搜索到相关的评论。最后也是同样的要求,评论查询的高可用性。基于这种场景我们可以采用mongodb中的分片来实现,通过mongodb的分片机制,我们可以将海量的数据查询分别负载到不同的分片服务器上面,最后将数据查询的数据结果整合到一起。基于这种情况,不管数据量有多大,我们都可以实现快速的查询功能,查询时间约等于(数据量/分片数量)。分片其实本身就是一种高可用性的方案,因为每一个分片都保留着完整的一份数据,每次插入数据的时候,先插入一个主分片中,然后同步复制到所有从分片中,即使一个分片挂了,其余分片也能自动升级为主分片,继续工作。
疑问点:
这边可能会有人要问,既然每片的数据都一样,那查询的时间不肯定也一样吗,怎么可能是(数据量/分片数量),不应该是(数据量*分片数量)时间吗。关于这个疑问的话,大家可能得仔细研究一下mongodb分片的规则了,mongodb分片的同时也会把数据进行分片划分,同样一份数据但是每片查询的区域是不一样的,比如分片一会查询数据的前半截,然后分片二会查询数据的后半截。这样不就可以做到同样的一份数据,但是每一份查询的数据区域都是不一样的。我这边只是简单的说明,想具体研究的话,可以自己百度百度研究研究。
Redis和MongoDB的区别以及应用场景的更多相关文章
- Redis和MongoDB的区别(面试受用)
项目中用的是MongoDB,但是为什么用其实当时选型的时候也没有太多考虑,只是认为数据量比较大,所以采用MongoDB. 最近又想起为什么用MongoDB,就查阅一下,汇总汇总: 之前也用过redis ...
- Memached、Redis、Mongodb的区别
性能 • 性能都很高,redis和memached差不多 > Mongodb 操作 • Memached:数据结构单一,只有key/value数据结构 • Redis有五种数据类型 ...
- Redis,Memcache,mongoDB的区别
从以下几个维度,对redis.memcache.mongoDB 做了对比,欢迎拍砖 1.性能 都比较高,性能对我们来说应该都不是瓶颈 总体来讲,TPS方面redis和memcache差不多,要大于mo ...
- MySQL和Mongodb的区别与应用场景对比
MySQL是关系型数据库 优势: 在不同的引擎上有不同 的存储方式. 查询语句是使用传统的sql语句,拥有较为成熟的体系,成熟度很高. 开源数据库的份额在不断增加,mysql的份额页在持续增长. 缺点 ...
- Memcached、Redis和MongoDB的区别
Memcached和Redis都是内存数据库. Memcached是多线程运行的: Redis单线程是单线程运行的: MongoDB是文档型的非关系型数据库..Net:RavenDB.
- redis和mongodb的比较
>>RedisRedis的优点:支持多种数据结构,如 string(字符串). list(双向链表).dict(hash表).set(集合).zset(排序set).hyperloglog ...
- 转载 NoSQL | Redis、Memcache、MongoDB特点、区别以及应用场景
NoSQL | Redis.Memcache.MongoDB特点.区别以及应用场景 2017-12-12 康哥 码神联盟 本篇文章主要介绍Nosql的一些东西,以及Nosql中比较火的三个数据库Red ...
- Redis、Memcache和MongoDB的区别
>>Memcached Memcached的优点:Memcached可以利用多核优势,单实例吞吐量极高,可以达到几十万QPS(取决于key.value的字节大小以及服务器硬件性能,日常环境 ...
- Nosql简介 Redis,Memchche,MongoDb的区别
本篇文章主要介绍Nosql的一些东西,以及Nosql中比较火的三个数据库Redis.Memchache.MongoDb和他们之间的区别.以下是本文章的阅读目录 一.Nosql介绍 1.Nosql简介 ...
随机推荐
- jemter csv参数化时注意问题
csv设置 请求参数中引用参数注意点: 查看结果树-请求-http:查看结果,乱码问题解决 1.需要设置下请求体编码 csv设置线程共享模式: 所有线程:测试计划中所有线程,假如说有线程1到线程n ( ...
- MySQL/MariaDB数据库的性能测试
MySQL/MariaDB数据库的性能测试 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据库服务衡量指标 qps: query per second(每秒支持多少查询 ...
- IPS检测
华为IPS语法: https://isecurity.huawei.com/sec/web/ipsmanual.do IPS漏洞查询(例如搜索反弹shell): https://isecurity.h ...
- hdu1384Intervals(差分约束)
#include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f; int n, head[maxn], ...
- P5024 保卫王国[倍增+dp]
窝当然不会ddp啦,要写这题当然是考虑优化裸dp啦,但是这题非常麻烦,于是变成了黑题. 首先,这个是没有上司的舞会模型,求图的带权最大独立集. 不考虑国王的限制条件,有 \[ dp[x][0]+=dp ...
- KVM-virsh常用命令
virsh list #在线VM virsh list --all #所有VM virsh start #开机 virsh shutdown #软关机 virsh destroy #强制关机 virs ...
- ARDUIN人体检测模块
http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-input/arduino-hc-sr501-motion-senso ...
- LG1378
题目描述 在一个长方形框子里,最多有N(0≤N≤6)个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界.必须等一个油滴扩展完毕才能放置下一个油滴. ...
- java 值传递、引用传递
class Demo02 { public static void main(String[] args) { int a=1; get(a);//值传递 System.out.println(a); ...
- 开源项目 10 CSV
using Newtonsoft.Json; using System; using System.Collections.Generic; using System.Data; using Syst ...