Linux性能优化实战学习笔记:第五十四讲
一、上节回顾
上一节,我带你学习了,如何使用 USE 法来监控系统的性能,先简单回顾一下。
系统监控的核心是资源的使用情况,这既包括 CPU、内存、磁盘、文件系统、网络等硬件资源,也包括文件描述符数、连接数、连接跟踪数等软件资源。而要描述这些资源瓶颈,最简单有效的
方法就是 USE 法。
USE 法把系统资源的性能指标,简化为了三个类别:使用率、饱和度以及错误数。 当这三者之中任一类别的指标过高时,都代表相对应的系统资源可能存在性能瓶颈。
基于 USE 法建立性能指标后,我们还需要通过一套完整的监控系统,把这些指标从采集、存储、查询、处理,再到告警和可视化展示等贯穿起来。这样,不仅可以将系统资源的瓶颈快速暴露出
来,还可以借助监控的历史数据,来追踪定位性能问题的根源。
除了上一节讲到的系统资源需要监控之外,应用程序的性能监控,当然也是必不可少的。今天,我就带你一起来看看,如何监控应用程序的性能。
二、指标监控
跟系统监控一样,在构建应用程序的监控系统之前,首先也需要确定,到底需要监控哪些指标。特别是要清楚,有哪些指标可以用来快速确认应用程序的性能问题。
对系统资源的监控,USE 法简单有效,却不代表其适合应用程序的监控。举个例子,即使在 CPU使用率很低的时候,也不能说明应用程序就没有性能瓶颈。因为应用程序可能会因为锁或者 RPC
调用等,导致响应缓慢。
所以,应用程序的核心指标,不再是资源的使用情况,而是请求数、错误率和响应时间。这些指标不仅直接关系到用户的使用体验,还反映应用整体的可用性和可靠性。
有了请求数、错误率和响应时间这三个黄金指标之后,我们就可以快速知道,应用是否发生了性能问题。但是,只有这些指标显然还是不够的,因为发生性能问题后,我们还希望能够快速定
位“性能瓶颈区”。所以,在我看来,下面几种指标,也是监控应用程序时必不可少的。
第一个,是应用进程的资源使用情况,比如进程占用的 CPU、内存、磁盘 I/O、网络等。使用过多的系统资源,导致应用程序响应缓慢或者错误数升高,是一个最常见的性能问题。
第二个,是应用程序之间调用情况,比如调用频率、错误数、延时等。由于应用程序并不是孤立的,如果其依赖的其他应用出现了性能问题,应用自身性能也会受到影响。
第三个,是应用程序内部核心逻辑的运行情况,比如关键环节的耗时以及执行过程中的错误等。由于这是应用程序内部的状态,从外部通常无法直接获取到详细的性能数据。所以,应用程序在
设计和开发时,就应该把这些指标提供出来,以便监控系统可以了解其内部运行状态。
有了应用进程的资源使用指标,你就可以把系统资源的瓶颈跟应用程序关联起来,从而迅速定位因系统资源不足而导致的性能问题;
- 有了应用程序之间的调用指标,你可以迅速分析出一个请求处理的调用链中,到底哪个组件才是导致性能问题的罪魁祸首;
- 而有了应用程序内部核心逻辑的运行性能,你就可以更进一步,直接进入应用程序的内部,定位到底是哪个处理环节的函数导致了性能问题。
基于这些思路,我相信你就可以构建出,描述应用程序运行状态的性能指标。再将这些指标纳入我们上一期提到的监控系统(比如 Prometheus + Grafana)中,就可以跟系统监控一样,一方
面通过告警系统,把问题及时汇报给相关团队处理;另一方面,通过直观的图形界面,动态展示应用程序的整体性能。
除此之外,由于业务系统通常会涉及到一连串的多个服务,形成一个复杂的分布式调用链。为了迅速定位这类跨应用的性能瓶颈,你还可以使用 Zipkin、Jaeger、Pinpoint 等各类开源工具,
来构建全链路跟踪系统。
比如,下图就是一个 Jaeger 调用链跟踪的示例。
全链路跟踪可以帮你迅速定位出,在一个请求处理过程中,哪个环节才是问题根源。比如,从上图中,你就可以很容易看到,这是 Redis 超时导致的问题。
全链路跟踪除了可以帮你快速定位跨应用的性能问题外,还可以帮你生成线上系统的调用拓扑图。这些直观的拓扑图,在分析复杂系统(比如微服务)时尤其有效
三、日志监控
性能指标的监控,可以让你迅速定位发生瓶颈的位置,不过只有指标的话往往还不够。比如,同样的一个接口,当请求传入的参数不同时,就可能会导致完全不同的性能问题。所以,除了指标
外,我们还需要对这些指标的上下文信息进行监控,而日志正是这些上下文的最佳来源。对比来看,
- 指标是特定时间段的数值型测量数据,通常以时间序列的方式处理,适合于实时监控。
- 而日志则完全不同,日志都是某个时间点的字符串消息,通常需要对搜索引擎进行索引后,才能进行查询和汇总分析。
对日志监控来说,最经典的方法,就是使用 ELK 技术栈,即使用 Elasticsearch、Logstash 和Kibana 这三个组件的组合。
如下图所示,就是一个经典的 ELK 架构图:
这其中,
- Logstash 负责对从各个日志源采集日志,然后进行预处理,最后再把初步处理过的日志,发送给 Elasticsearch 进行索引。
- Elasticsearch 负责对日志进行索引,并提供了一个完整的全文搜索引擎,这样就可以方便你从日志中检索需要的数据。
- Kibana 则负责对日志进行可视化分析,包括日志搜索、处理以及绚丽的仪表板展示等。
下面这张图,就是一个 Kibana 仪表板的示例,它直观展示了 Apache 的访问概况。
值得注意的是,ELK 技术栈中的 Logstash 资源消耗比较大。所以,在资源紧张的环境中,我们往往使用资源消耗更低的 Fluentd,来替代 Logstash(也就是所谓的 EFK 技术栈)。
四、小结
今天,我为你梳理了应用程序监控的基本思路。应用程序的监控,可以分为指标监控和日志监控两大部分:
- 指标监控主要是对一定时间段内性能指标进行测量,然后再通过时间序列的方式,进行处理、存储和告警。
- 日志监控则可以提供更详细的上下文信息,通常通过 ELK 技术栈来进行收集、索引和图形化展示。
在跨多个不同应用的复杂业务场景中,你还可以构建全链路跟踪系统。这样可以动态跟踪调用链中各个组件的性能,生成整个流程的调用拓扑图,从而加快定位复杂应用的性能问题。
Linux性能优化实战学习笔记:第五十四讲的更多相关文章
- Linux性能优化实战学习笔记:第二十四讲
一.磁盘 1.机械磁盘 2.固态磁盘 3.相同磁盘随机I/O比连续I/O慢很多 4.最小单位 5.接口 6.RAID陈列卡 7.网路存储 二.通用块层 1.概念 2.第一功能 3.第二功能 4.I/O ...
- Linux性能优化实战学习笔记:第十八讲
一.内存的分配和回收 1.管理内存的过程中,也很容易发生各种各样的“事故”, 对应用程序来说,动态内存的分配和回收,是既核心又复杂的一的一个逻辑功能模块.管理内存的过程中,也很容易发生各种各样的“事故 ...
- Linux性能优化实战学习笔记:第十二讲
一.性能优化方法论 不可中断进程案例 二.怎么评估性能优化的效果? 1.评估思路 2.几个为什么 1.为什么要选择不同维度的指标? 应用程序和系统资源是相辅相成的关系 2.性能优化的最终目的和结果? ...
- Linux性能优化实战学习笔记:第十六讲
一.free数据的来源 1.碰到看不明白的指标时该怎么办吗? 不懂就去查手册.用 man 命令查询 free 的文档.就可以找到对应指标的详细说明.比如,我们执行 man fre... 2.free数 ...
- Linux性能优化实战学习笔记:第二十六讲
一.案例环境描述 1.环境准备 2CPU,4GB内存 预先安装docker sysstat工具 2.温馨提示 案例中 Python 应用的核心逻辑比较简单,你可能一眼就能看出问题,但实际生产环境中的源 ...
- Linux性能优化实战学习笔记:第二十八讲
一.案例环境描述 1.环境准备 2CPU,4GB内存 预先安装docker sysstat工具 apt install docker.io sysstat nake git 案例总共由三个容器组成: ...
- Linux性能优化实战学习笔记:第三十一讲
一.上节回顾 上一节,我们一起回顾了常见的文件系统和磁盘 I/O 性能指标,梳理了核心的 I/O 性能观测工具,最后还总结了快速分析 I/O 性能问题的思路. 虽然 I/O 的性能指标很多,相应的性能 ...
- Linux性能优化实战学习笔记:第三十七讲
一.上节回顾 上一节,我带你一起学习了网络性能的评估方法.简单回顾一下,Linux 网络基于 TCP/IP协议栈构建,而在协议栈的不同层,我们所关注的网络性能也不尽相同. 在应用层,我们关注的是应用程 ...
- Linux性能优化实战学习笔记:第十五讲
一.内存映射 内存管理也是操作系统最核心的功能之一,内存主要用来存储系统和应用程序的指令.数据.缓存等 1.我们通说的内存指的是物理内存还是虚拟内存? 我们通常说的内存容量,其实这指的是物理内存,物理 ...
- Linux性能优化实战学习笔记:第十讲
一.坏境准备 1.拓扑图 2.安装包 在第9节的基础上 在VM2上安装hping3依奈包 wget http://www.tcpdump.org/release/libpcap-1.9.0.tar.g ...
随机推荐
- Java连载7-变量&数据类型
一.变量 1.注意点: 在同一个“作用域”中,变量名不能重名,但是变量可以重新赋值. 2.什么是作用域? 答:描述的是变量的有效范围,在范围之内是可以被访问的,只要出了作用域就无法访问(也就是在大括号 ...
- NPOI 帮助类
NPOI 帮助类 代码实现了来自于互联网 using System; using System.Data; using System.IO; using System.Text; using NPOI ...
- Kubernetes Ingress 部署
Kubernetes Ingress 部署 Pod与Ingress的关系• 通过service相关联• 通过Ingress Controller实现Pod的负载均衡- 支持TCP/UDP 4层和HTT ...
- FastDFS图片服务器(分布式文件系统)学习。
参考:https://blog.csdn.net/hiqingtian/article/details/79413471 https://blog.csdn.net/sinat_40399893/ar ...
- PIE调用Python获得彩色直方图
前段时间我一直在研究PIE SDK与Python的结合,因为在我的开发中,我想获取一张图片的统计直方图,虽然在SDK中有提供关于直方图的类接口(如IStatsHistogram 接口.Histogra ...
- C# - MD5验证
前言 本篇主要记录:VS2019 WinFrm桌面应用程序实现字符串和文件的Md5转换功能.后续系统用户登录密码保护,可采用MD5加密保存到后台数据库. 准备工作 搭建WinFrm前台界面 如下图 核 ...
- 开源工作流引擎 Workflow Core 的研究和使用教程
目录 开源工作流引擎 Workflow Core 的研究和使用教程 一,工作流对象和使用前说明 二,IStepBuilder 节点 三,工作流节点的逻辑和操作 容器操作 普通节点 事件 条件体和循环体 ...
- C 结构体、位域
参考链接:https://www.runoob.com/cprogramming/c-structures.html 结构体是干啥的 例如数组可以用来存储多个相同数据类型的数据项,结构体也是一种数据类 ...
- JDK1.8 Stream
Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据. Stream 使用一种类似用 SQL 语句从数据库查询数据的直观方式来提供一种对 Java 集合运算和表达 ...
- 面试阿里百分百问的Jvm,别问有没有必要学,真的很有必要朋友
面试阿里百分百问的Jvm,别问有没有必要学,真的很有必要朋友 前言: JVM 的内存模型和 JVM 的垃圾回收机制一直是 Java 业内从业者绕不开的话题(实际调优.面试)JVM是java中很重要的一 ...