We run a preorder depth first search on the `root`of a binary tree.

At each node in this traversal, we output D dashes (where D is the depth of this node), then we output the value of this node.  (If the depth of a node is D, the depth of its immediate child is D+1.  The depth of the root node is 0.)

If a node has only one child, that child is guaranteed to be the left child.

Given the output S of this traversal, recover the tree and return its root.

Example 1:

Input: "1-2--3--4-5--6--7"
Output: [1,2,5,3,4,6,7]

Example 2:

Input: "1-2--3---4-5--6---7"
Output: [1,2,5,3,null,6,null,4,null,7]

Example 3:

Input: "1-401--349---90--88"
Output: [1,401,null,349,88,90]

Note:

  • The number of nodes in the original tree is between 1 and 1000.
  • Each node will have a value between 1 and 10^9.

这道题让我们根据一棵二叉树的先序遍历的结果来重建这棵二叉树,之前有过根据三种遍历方式-先序,中序,后序中的两个来重建二叉树 [Construct Binary Tree from Inorder and Postorder Traversal](http://www.cnblogs.com/grandyang/p/4296193.html) 和 [Construct Binary Tree from Preorder and Inorder Traversal](http://www.cnblogs.com/grandyang/p/4296500.html),因为一种遍历方式得到的结点值数组是无法唯一的重建出一棵二叉树的。这里为了能够只根据先序遍历的结果来唯一的重建出二叉树,提供了每个结点值的深度,用短杠的个数来表示,根结点的深度为0,前方没有短杠,后面的数字前方只有一个短杠的就是根结点的左右子结点,然后紧跟在一个短杠后面的两个短杠的数字就是根结点左子结点的左子结点,以此类推。而且题目还说了,若某个结点只有一个子结点,那么一定是左子结点,这就保证了树结构的唯一性。其实这道题还是蛮有难度的,输入只给了一个字符串,我们不但要把结点值和深度分别提取出来,还要正确的组成树的结构。由于先序遍历的特点,左右子结点的位置可能相隔很远,就拿例子1来说吧,根结点1的左结点2是紧跟在后面的,但是根结点1的右子结点5却在很后面,而且有时候也不一定存在右子结点,博主刚开始想的是先查找右子结点的位置,然后调用递归,但是发现不好查找,为啥呢,因为 C++ 中好像没有 whole match 的查找功能,这里需要要查找一个杠,且前后位置都不能是杠,后来觉得若树的深度很大的话,这种处理方式貌似不是很高效。得换一个角度来想问题,我们在写非递归的先序遍历的时候,使用了栈来辅助遍历,这里同样也可以利用栈的后入先出的特点来做。

遍历输入字符串,先提取短杠的个数,因为除了根结点之外,所有的深度值都是在结点值前面的,所有用一个 for 循环先提取出短杠的个数 level,然后提取结点值,也是用一个 for 循环,因为结点值可能是个多位数,有了结点值之后我们就可以新建一个结点了。下一步就比较 tricky 了,因为先序遍历跟 DFS 搜索一样有一个回到先前位置的过程,比如例子1中,当我们遍历到结点5的时候,此时是从叶结点4回到了根结点的右子结点5,现在栈中有4个结点,而当前深度为1的结点5是要连到根结点的,所以栈中的无关结点就要移除,需要把结点 2,3,4 都移除,就用一个 while 循环,假如栈中元素个数大于当前的深度 level,就移除栈顶元素。那么此时栈中就只剩根结点了,就可以连接了。此时我们的连接策略是,假如栈顶元素的左子结点为空,则连在左子结点上,否则连在右子结点上,因为题目中说了,假如只有一个子结点,一定是左子结点。然后再把当前结点压入栈即可,字符串遍历结束后,栈中只会留有一个结点(题目中限定了树不为空),就是根结点,直接返回即可,参见代码如下:

解法一:

class Solution {
public:
TreeNode* recoverFromPreorder(string S) {
vector<TreeNode*> st;
int i = 0, level = 0, val = 0, n = S.size();
while (i < n) {
for (level = 0; i < n && S[i] == '-'; ++i) {
++level;
}
for (val = 0; i < n && S[i] != '-'; ++i) {
val = 10 * val + (S[i] - '0');
}
TreeNode *node = new TreeNode(val);
while (st.size() > level) st.pop_back();
if (!st.empty()) {
if (!st.back()->left) st.back()->left = node;
else st.back()->right = node;
}
st.push_back(node);
}
return st[0];
}
};

虽然博主最开始想的递归方法不太容易实现,但其实这道题也是可以用递归来做的,这里我们需要一个全局变量 cur,表示当前遍历字符串S的位置,递归函数还要传递个当前的深度 level。在递归函数中,首先还是要提取短杠的个数,但是这里有个很 tricky 的地方,我们在统计短杠个数的时候,不能更新 cur,因为 cur 是个全局变量,当统计出来的短杠个数跟当前的深度不相同,就不能再继续处理了,如果此时更新了 cur,而没有正确的复原的话,就会出错。博主成功入坑,检查了好久才找出原因。当短杠个数跟当前深度相同时,我们继续提取出结点值,然后新建出结点,对下一层分别调用递归函数赋给新建结点的左右子结点,最后返回该新建结点即可,参见代码如下:


解法二:

class Solution {
public:
TreeNode* recoverFromPreorder(string S) {
int cur = 0;
return helper(S, cur, 0);
}
TreeNode* helper(string& S, int& cur, int level) {
int cnt = 0, n = S.size(), val = 0;
while (cur + cnt < n && S[cur + cnt] == '-') ++cnt;
if (cnt != level) return nullptr;
cur += cnt;
for (; cur < n && S[cur] != '-'; ++cur) {
val = 10 * val + (S[cur] - '0');
}
TreeNode *node = new TreeNode(val);
node->left = helper(S, cur, level + 1);
node->right = helper(S, cur, level + 1);
return node;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/1028

类似题目:

Construct Binary Tree from Inorder and Postorder Traversal

Construct Binary Tree from Preorder and Inorder Traversal

参考资料:

https://leetcode.com/problems/recover-a-tree-from-preorder-traversal/

https://leetcode.com/problems/recover-a-tree-from-preorder-traversal/discuss/274656/Java-recursive-solution.

https://leetcode.com/problems/recover-a-tree-from-preorder-traversal/discuss/274621/JavaC%2B%2BPython-Iterative-Stack-Solution

[LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)

[LeetCode] 1028. Recover a Tree From Preorder Traversal 从先序遍历还原二叉树的更多相关文章

  1. 【leetcode】1028. Recover a Tree From Preorder Traversal

    题目如下: We run a preorder depth first search on the root of a binary tree. At each node in this traver ...

  2. [Swift]LeetCode1028. 从先序遍历还原二叉树 | Recover a Tree From Preorder Traversal

    We run a preorder depth first search on the root of a binary tree. At each node in this traversal, w ...

  3. Binary Tree Inorder/Preorder Traversal 返回中序和前序/遍历二叉树的元素集合

    给定一个二叉树,以集合方式返回其中序/先序方式遍历的所有元素. 有两种方法,一种是经典的中序/先序方式的经典递归方式,另一种可以结合栈来实现非递归 Given a binary tree, retur ...

  4. 【leetcode 968. 1028. 从先序遍历还原二叉树】解题报告[待完善...]

    思路:用一个栈来管理树的层次关系,索引代表节点的深度 方法一: TreeNode* recoverFromPreorder(string S) { /* 由题意知,最上层节点深度为0(数字前面0条横线 ...

  5. [LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  6. [LeetCode] 105. Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  7. (二叉树 递归) leetcode 889. Construct Binary Tree from Preorder and Postorder Traversal

    Return any binary tree that matches the given preorder and postorder traversals. Values in the trave ...

  8. LeetCode 105. Construct Binary Tree from Preorder and Inorder Traversal 由前序和中序遍历建立二叉树 C++

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  9. [LeetCode] 106. Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

随机推荐

  1. MySQL锁表查询SQL

    // 查看进程 SHOW PROCESSLIST; // 查看是否锁表 SHOW OPEN TABLES WHERE In_use > 0; // 查看正在锁的事务 SELECT * FROM ...

  2. 软件----- idea 配置创建一个简单javase项目

    1.显示工具栏和工具按钮,勾选上 如图,在左侧会增加对应的 2.设置项目结构,选择jdk 点击new  选择需要jdk 3.创建一个简单的java文件,和eclipse与myeslipse 差不多, ...

  3. Vue.js 源码分析(二十五) 高级应用 插槽 详解

    我们定义一个组件的时候,可以在组件的某个节点内预留一个位置,当父组件调用该组件的时候可以指定该位置具体的内容,这就是插槽的用法,子组件模板可以通过slot标签(插槽)规定对应的内容放置在哪里,比如: ...

  4. locally weighted regression - CS229

    欠拟合和过拟合 看下方的三张图 第一幅拟合为了 y=θ0+θ1xy=θ0+θ1x 的一次函数 第二幅拟合为了y=θ0+θ1x+θ2x2y=θ0+θ1x+θ2x2 的二次函数 第三幅拟合为了 y=∑5j ...

  5. C 预处理器、头文件、文件读写

    预处理器 参考链接:https://www.runoob.com/cprogramming/c-preprocessors.html 预处理器是再变异之前做的一些工作 include 包含一个源文件代 ...

  6. VMware与 Device/Credential Guard 不兼容,解决办法及心得

    以下为心路历程,想要直接解决可以直接拉到最后看后续 百度要你取消Hyper-V功能,但我要用docker,以及一些相关的帖子都无效的情况下 https://blog.csdn.net/u0136677 ...

  7. spring事务的三种配置应用实例

    0.项目结构 具体代码见:https://github.com/xkzhangsan/spring-transaction-practice.git,包括创建表sql在内. 1.编程式事务使用Data ...

  8. redis笔记1

    存储结构 字符类型 散列类型 列表类型 集合类型 有序集合 可以为每个key设置超时时间: 可以通过列表类型来实现分布式队列的操作 支持发布订阅的消息模式 提供了很多命令与redis进行交互 数据缓存 ...

  9. UILabel的各种属性和方法

    转自:http://liulu200888an.blog.163.com/blog/static/3498972320121214208542/ UILabel  *label1 = [[UILabe ...

  10. SAP MM 公司间STO里外向交货单与内向交货单里序列号对应关系

    SAP MM 公司间STO里外向交货单与内向交货单里序列号对应关系 笔者所在的A项目,后勤模块里有启用HU管理,序列号管理,批次管理等功能,以实现各个业务场景下的追溯. 公司间转储订单流程里,如果是整 ...