[LeetCode] 296. Best Meeting Point 最佳开会地点
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|
.
Example:
Input: 1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0 Output: 6 Explanation: Given three people living at(0,0)
,(0,4)
, and(2,2)
:
The point(0,2)
is an ideal meeting point, as the total travel distance
of 2+2+2=6 is minimal. So return 6.
Hint:
- Try to solve it in one dimension first. How can this solution apply to the two dimension case?
这道题让我们求最佳的开会地点,该地点需要到每个为1的点的曼哈顿距离之和最小,题目中给了提示,让从一维的情况来分析,先看一维时有两个点A和B的情况,
______A_____P_______B_______
可以发现,只要开会为位置P在 [A, B] 区间内,不管在哪,距离之和都是A和B之间的距离,如果P不在 [A, B] 之间,那么距离之和就会大于A和B之间的距离,现在再加两个点C和D:
______C_____A_____P_______B______D______
通过分析可以得出,P点的最佳位置就是在 [A, B] 区间内,这样和四个点的距离之和为AB距离加上 CD 距离,在其他任意一点的距离都会大于这个距离,那么分析出来了上述规律,这题就变得很容易了,只要给位置排好序,然后用最后一个坐标减去第一个坐标,即 CD 距离,倒数第二个坐标减去第二个坐标,即 AB 距离,以此类推,直到最中间停止,那么一维的情况分析出来了,二维的情况就是两个一维相加即可,参见代码如下:
解法一:
class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
return minTotalDistance(rows) + minTotalDistance(cols);
}
int minTotalDistance(vector<int> v) {
int res = ;
sort(v.begin(), v.end());
int i = , j = v.size() - ;
while (i < j) res += v[j--] - v[i++];
return res;
}
};
我们也可以不用多写一个函数,直接对 rows 和 cols 同时处理,稍稍能简化些代码:
解法二:
class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
sort(cols.begin(), cols.end());
int res = , i = , j = rows.size() - ;
while (i < j) res += rows[j] - rows[i] + cols[j--] - cols[i++];
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/296
类似题目:
Minimum Moves to Equal Array Elements II
Shortest Distance from All Buildings
参考资料:
https://leetcode.com/problems/best-meeting-point/
https://leetcode.com/problems/best-meeting-point/discuss/74186/14ms-java-solution
https://leetcode.com/problems/best-meeting-point/discuss/74244/Simple-Java-code-without-sorting.
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 296. Best Meeting Point 最佳开会地点的更多相关文章
- [LeetCode] Best Meeting Point 最佳开会地点
A group of two or more people wants to meet and minimize the total travel distance. You are given a ...
- [Swift]LeetCode296. 最佳开会地点 $ Best Meeting Point
A group of two or more people wants to meet and minimize the total travel distance. You are given a ...
- 【leetcode】296.Best Meeting Point
原题 A group of two or more people wants to meet and minimize the total travel distance. You are given ...
- 296. Best Meeting Point
题目: A group of two or more people wants to meet and minimize the total travel distance. You are give ...
- 【LeetCode】253. Meeting Rooms II 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 排序+堆 日期 题目地址:https://leetco ...
- 【LeetCode】252. Meeting Rooms 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 排序 日期 题目地址:https://leetcode ...
- 【leetcode】1229.Meeting Scheduler
题目如下: 你是一名行政助理,手里有两位客户的空闲时间表:slots1 和 slots2,以及会议的预计持续时间 duration,请你为他们安排合适的会议时间. 「会议时间」是两位客户都有空参加,并 ...
- [LeetCode] 317. Shortest Distance from All Buildings 建筑物的最短距离
You want to build a house on an empty land which reaches all buildings in the shortest amount of dis ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
随机推荐
- matplotlib画预测框以及打标签
https://blog.csdn.net/weixin_43338538/article/details/89003280 https://blog.csdn.net/yjl9122/article ...
- XML与DataTable相互转换
1.DataTable转XML #region DataTableToXml /// <summary> /// 将DataTable对象转换成XML字符串 /// </summar ...
- SATA接口、PCI/PCIe、NVMe的介绍
SATA接口.PCI/PCIe.NVMe的介绍 SATA接口 SATA是Serial ATA的缩写,即串行ATA. SATA已经完全取代旧式PATA(Parallel ATA或旧称IDE)接口的旧式硬 ...
- Docker(二)-在Docker中部署Nginx实现负载均衡(视频教程)
本教程介绍利用Docker部署Nginx服务实现负载均衡. (双击全屏播放)
- Java构造函数执行顺序
首先执行基类的构造函数 然后执行派生类的构造函数之外的初始化语句 最后执行派生类的构造函数 在Java中,如果派生类构造函数需要调用基类的构造函数,那么基类构造函数必须作为派生类构造函数的第一句话.在 ...
- i春秋CTF-“百度杯”CTF比赛 九月场 XSS平台
“百度杯“CTF比赛 九月场 ###XSS平台 看了别人的wp才知道这里需要变数组引起报错然后百度信息收集,这一步在实战中我觉得是很有作用的,get到. 这里取百度rtiny,看别人w ...
- iOS开发之--为UITextField监听数值变化的三种方法
项目中有个验证码输入直接验证跳转页面,用的RAC来监听textfield的输入值,如下: @weakify(self); [self.codeView.textField.rac_textSignal ...
- Mac OSX(Mac OS10.11) 安装 pwntools 失败的最新解决方案
pwntools是一个 CTF 框架和漏洞利用开发库,用 Python 开发,由 rapid 设计,旨在让使用者简单快速的编写 exploit. 网上针对 Mac OS 的安装教程大多都是基于 pip ...
- Flink使用SideOutPut替换Split实现分流
以前的数据分析项目(版本1.4.2),对从Kafka读取的原始数据流,调用split接口实现分流. 新项目决定使用Flink 1.7.2,使用split接口进行分流的时候,发现接口被标记为deprac ...
- Spring事务部分知识点整理
目录 1.数据库事务基础概念 2.Spring中注解事务的使用 3.Spring事务使用注意场景 1.数据库事务基础概念 数据库事务是对数据库一次一系列的操作组成的单元,可以包含增删改查或者只有单 ...