16-numpy笔记-莫烦pandas-4
代码
import pandas as pd
import numpy as np dates = pd.date_range('20130101', periods=6)
df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D']) # 行数,列数,赋值
df.iloc[0,1] = np.nan
df.iloc[1,2] = np.nan # 以行丢掉
print('-1-')
print(df.dropna(axis=0)) # 有nan就丢 这是默认情况
print('-2-')
print(df.dropna(axis=0, how='any')) # 全是nan再丢
print('-3-')
print(df.dropna(axis=0, how='all')) # 填上
print('-4-')
print(df.fillna(value=0)) # 判断每个的结果
print('-5-')
print(df.isnull()) # 整体内是不是有null
print('-6-')
print(np.any(df.isnull()) == True) # 读取保存数据 read_csv to_csv
df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d']) print('-7-')
print(df1)
print(df2)
print(df3) # axis=0 竖向合并
res = pd.concat([df1,df2,df3], axis=0)
print('-8-')
print(res) res = pd.concat([df1,df2,df3], axis=0, ignore_index=True)
print('-9-')
print(res) df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'],index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['b','c','d','e'],index=[2,3,4])
print('-10-')
print(df1)
print(df2) # 组合模式
res = pd.concat([df1,df2])
print('-11-')
print(res)
# defalut 并集
res = pd.concat([df1,df2], join='outer')
print('-12-')
print(res)
# 交集
res = pd.concat([df1,df2], join='inner')
print('-13-')
print(res) res = pd.concat([df1,df2], join='inner', ignore_index=True)
print('-14-')
print(res) # axis=1 左右合并 只考虑df1的index
res = pd.concat([df1,df2], axis=1,join_axes=[df1.index])
print('-15-')
print(res) # axis=1 左右合并
res = pd.concat([df1,df2], axis=1)
print('-16-')
print(res) df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2,columns=['b','c','d','e'],index=[2,3,4]) res = df1.append(df2, ignore_index=True)
print('-17-')
print(res) res = df1.append([df2, df3], ignore_index=True)
print('-18-')
print(res) s1 = pd.Series([1,2,3,4], index=['a','b','c','d'])
res = df1.append(s1,ignore_index=True) print('-19-')
print(res)
输出
-1-
A B C D
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-2-
A B C D
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-3-
A B C D
2013-01-01 0 NaN 2.0 3
2013-01-02 4 5.0 NaN 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-4-
A B C D
2013-01-01 0 0.0 2.0 3
2013-01-02 4 5.0 0.0 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-5-
A B C D
2013-01-01 False True False False
2013-01-02 False False True False
2013-01-03 False False False False
2013-01-04 False False False False
2013-01-05 False False False False
2013-01-06 False False False False
-6-
True
-7-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
a b c d
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
a b c d
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
-8-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
-9-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0
7 2.0 2.0 2.0 2.0
8 2.0 2.0 2.0 2.0
-10-
a b c d
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
b c d e
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
d:\Alex\WorkLog\34-deeplearning\myWorks\TransferLearningExample\mofangTransferLearning\1.py:62: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False res = pd.concat([df1,df2])
-11-
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
d:\Alex\WorkLog\34-deeplearning\myWorks\TransferLearningExample\mofangTransferLearning\1.py:66: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False res = pd.concat([df1,df2], join='outer')
-12-
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
-13-
b c d
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
-14-
b c d
0 0.0 0.0 0.0
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 1.0 1.0 1.0
-15-
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
-16-
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0
-17-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py:6201: FutureWarning: Sorting because non-concatenation axis
is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False sort=sort)
-18-
a b c d e
0 0.0 0.0 0.0 0.0 NaN
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 1.0 1.0 1.0 1.0 NaN
4 1.0 1.0 1.0 1.0 NaN
5 1.0 1.0 1.0 1.0 NaN
6 NaN 2.0 2.0 2.0 2.0
7 NaN 2.0 2.0 2.0 2.0
8 NaN 2.0 2.0 2.0 2.0
-19-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 2.0 3.0 4.0
16-numpy笔记-莫烦pandas-4的更多相关文章
- 15-numpy笔记-莫烦pandas-3
代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...
- 14-numpy笔记-莫烦pandas-2
代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...
- 18-numpy笔记-莫烦pandas-6-plot显示
代码 import pandas as pd import numpy as np import matplotlib.pyplot as plt data = pd.Series(np.random ...
- 17-numpy笔记-莫烦pandas-5
代码 import pandas as pd import numpy as np left=pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0', ...
- 13-numpy笔记-莫烦pandas-1
代码 import pandas as pd import numpy as np s = pd.Series([1,3,6,np.nan, 44,1]) print('-1-') print(s) ...
- 11-numpy笔记-莫烦基础操作1
代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...
- 12-numpy笔记-莫烦基本操作2
代码 import numpy as np A = np.arange(3,15) print('-1-') print(A) print('-2-') print(A[3]) A = np.aran ...
- tensorflow学习笔记-bili莫烦
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...
- Python pandas & numpy 笔记
记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: impo ...
随机推荐
- redis数据查看工具
Redis缓存数据库目前已大量的应用,广泛用于存储session信息,权限信息,交易作业等热数据.但是Redis存在的数据可视化不便.Redis的数据查看维护困难.Redis状态监控运维不易等问题.使 ...
- 8.Go-Reader,Writer和ioutil
8.1.Reader (1)输入流 流是应用程序和外部资源进行数据交互的纽带 流分为输入流和输出流,输入和输出都是相对于程序,把外部数据传入程序中叫做输入流,反之叫做输出流 在Go语言标准库中io包下 ...
- Vue中MVVM模式的双向绑定原理 和 代码的实现
今天带大家简单的实现MVVM模式,Object.defineProperty代理(proxy)数据 MVVM的实现方式: 模板编译(Compile) 数据劫持(Observer) Object ...
- (三十九)golang--反序列化
反序列化:是指将json字符串反序列化成原来的数据类型. import ( "encoding/json" "fmt" ) type monster struc ...
- 大话设计模式Python实现-模板方法模式
模板方法模式(Template Method Pattern):定义一个操作中的算法骨架,将一些步骤延迟至子类中.模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤. 下面是一个模 ...
- vsftpd限制下载流量
有时候我们在公司为了考虑业务,流量以及用户数问题会做一些限制操作,今天我们来看一下vsftpd是怎么做限流的 在vsftpd配置文件中添加如下内容 为了方便测试我们临时生成一个文件 接下来我们开始测试 ...
- 手风琴效果 animate
animate的手风琴效果 <style type="text/css"> * { margin: 0; padding: 0; } ul{ list-style: n ...
- python之np.tile()
Numpy的tile()函数,就是将原矩阵横向.纵向地复制.tile是瓷砖的意思, 顾名思义,这个函数就是把数组像瓷砖一样铺展开来. 例1: 解释:b是一个数, 在同一个列表中把a横向铺展了21遍. ...
- C# 中一个限制 Task 并发执行的数量的示例
直接贴代码了: using System; using System.Linq; using System.Threading; using System.Threading.Tasks; class ...
- vue 上传进度显示
参考资料: https://ask.csdn.net/questions/767017 https://www.cnblogs.com/best-fyx/p/11363506.html 我使用的是el ...