代码

import pandas as pd
import numpy as np dates = pd.date_range('20130101', periods=6)
df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D']) # 行数,列数,赋值
df.iloc[0,1] = np.nan
df.iloc[1,2] = np.nan # 以行丢掉
print('-1-')
print(df.dropna(axis=0)) # 有nan就丢 这是默认情况
print('-2-')
print(df.dropna(axis=0, how='any')) # 全是nan再丢
print('-3-')
print(df.dropna(axis=0, how='all')) # 填上
print('-4-')
print(df.fillna(value=0)) # 判断每个的结果
print('-5-')
print(df.isnull()) # 整体内是不是有null
print('-6-')
print(np.any(df.isnull()) == True) # 读取保存数据 read_csv to_csv
df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d']) print('-7-')
print(df1)
print(df2)
print(df3) # axis=0 竖向合并
res = pd.concat([df1,df2,df3], axis=0)
print('-8-')
print(res) res = pd.concat([df1,df2,df3], axis=0, ignore_index=True)
print('-9-')
print(res) df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'],index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['b','c','d','e'],index=[2,3,4])
print('-10-')
print(df1)
print(df2) # 组合模式
res = pd.concat([df1,df2])
print('-11-')
print(res)
# defalut 并集
res = pd.concat([df1,df2], join='outer')
print('-12-')
print(res)
# 交集
res = pd.concat([df1,df2], join='inner')
print('-13-')
print(res) res = pd.concat([df1,df2], join='inner', ignore_index=True)
print('-14-')
print(res) # axis=1 左右合并 只考虑df1的index
res = pd.concat([df1,df2], axis=1,join_axes=[df1.index])
print('-15-')
print(res) # axis=1 左右合并
res = pd.concat([df1,df2], axis=1)
print('-16-')
print(res) df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2,columns=['b','c','d','e'],index=[2,3,4]) res = df1.append(df2, ignore_index=True)
print('-17-')
print(res) res = df1.append([df2, df3], ignore_index=True)
print('-18-')
print(res) s1 = pd.Series([1,2,3,4], index=['a','b','c','d'])
res = df1.append(s1,ignore_index=True) print('-19-')
print(res)

  

输出

-1-
A B C D
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-2-
A B C D
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-3-
A B C D
2013-01-01 0 NaN 2.0 3
2013-01-02 4 5.0 NaN 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-4-
A B C D
2013-01-01 0 0.0 2.0 3
2013-01-02 4 5.0 0.0 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-5-
A B C D
2013-01-01 False True False False
2013-01-02 False False True False
2013-01-03 False False False False
2013-01-04 False False False False
2013-01-05 False False False False
2013-01-06 False False False False
-6-
True
-7-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
a b c d
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
a b c d
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
-8-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
-9-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0
7 2.0 2.0 2.0 2.0
8 2.0 2.0 2.0 2.0
-10-
a b c d
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
b c d e
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
d:\Alex\WorkLog\34-deeplearning\myWorks\TransferLearningExample\mofangTransferLearning\1.py:62: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False res = pd.concat([df1,df2])
-11-
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
d:\Alex\WorkLog\34-deeplearning\myWorks\TransferLearningExample\mofangTransferLearning\1.py:66: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False res = pd.concat([df1,df2], join='outer')
-12-
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
-13-
b c d
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
-14-
b c d
0 0.0 0.0 0.0
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 1.0 1.0 1.0
-15-
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
-16-
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0
-17-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py:6201: FutureWarning: Sorting because non-concatenation axis
is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False sort=sort)
-18-
a b c d e
0 0.0 0.0 0.0 0.0 NaN
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 1.0 1.0 1.0 1.0 NaN
4 1.0 1.0 1.0 1.0 NaN
5 1.0 1.0 1.0 1.0 NaN
6 NaN 2.0 2.0 2.0 2.0
7 NaN 2.0 2.0 2.0 2.0
8 NaN 2.0 2.0 2.0 2.0
-19-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 2.0 3.0 4.0

  

16-numpy笔记-莫烦pandas-4的更多相关文章

  1. 15-numpy笔记-莫烦pandas-3

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  2. 14-numpy笔记-莫烦pandas-2

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  3. 18-numpy笔记-莫烦pandas-6-plot显示

    代码 import pandas as pd import numpy as np import matplotlib.pyplot as plt data = pd.Series(np.random ...

  4. 17-numpy笔记-莫烦pandas-5

    代码 import pandas as pd import numpy as np left=pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0', ...

  5. 13-numpy笔记-莫烦pandas-1

    代码 import pandas as pd import numpy as np s = pd.Series([1,3,6,np.nan, 44,1]) print('-1-') print(s) ...

  6. 11-numpy笔记-莫烦基础操作1

    代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...

  7. 12-numpy笔记-莫烦基本操作2

    代码 import numpy as np A = np.arange(3,15) print('-1-') print(A) print('-2-') print(A[3]) A = np.aran ...

  8. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

  9. Python pandas & numpy 笔记

    记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: impo ...

随机推荐

  1. Vue介绍(一)

    官网:https://cn.vuejs.org/ Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.V ...

  2. git报错_you are not allowed to push code to protected branches on this project

    问题描述 今天在提交代码的时候,由于使用的是新库,写完代码后,进行push,发现报错 you are not allowed to push code to protected branches on ...

  3. 解释JUnit中@BeforeClass和@AfterClass标注的方法必须是static的,而在TestNg不必

    在JUnit中@BeforeClass和@AfterClass标注的方法必须是static的:但是在TestNg中却没有这样的限制,这是为什么呢. 其实和他们两的运行机制有关. 在junit中: 每运 ...

  4. C 指针(pointer)

    C 指针(pointer) /* * pointer.c * 指针在C中的应用 * */ #include <stdio.h> int main(void) { /* * i是一个int类 ...

  5. Kubernetes容器集群管理环境 - 完整部署(下篇)

    在前一篇文章中详细介绍了Kubernetes容器集群管理环境 - 完整部署(中篇),这里继续记录下Kubernetes集群插件等部署过程: 十一.Kubernetes集群插件 插件是Kubernete ...

  6. UVA 10790 How Many Points of Intersection? 组合数学

    We have two rows. There are a dots on the top row and b dots on the bottom row. We draw line segment ...

  7. C# 中如何深度复制某一个类型(备注:可能有 N 个类型需要复制)的对象?

    如题,针对某一个特定的类型,深度复制,没有那么难,最起码可以手动赋值,但如果要针对 N 多类型深度复制,最简单的方法,是把这个对象序列化成 XML.JSON 或其它可以序列化的载体,然后再将这个载体反 ...

  8. Python getopt 模块

    Python getopt 模块 getopt模块,是配合sys.argv使用的一个扩展.他可以接收终端的参数.格式扩展为“-n” 或 “--n”两种类型,下面是具体解释. 使用 improt get ...

  9. SkyWalking分布式链路追踪和监控-项目实战

    微服务框架落地后,分布式部署架构带来的问题就会迅速凸显出来.服务之间的相互调用过程中,如果业务出现错误或者异常,如何快速定位问题?如何跟踪业务调用链路?如何分析解决业务瓶颈?本专栏将引入Skywalk ...

  10. 2018-9-30-win10-UWP-剪贴板-Clipboard

    原文:2018-9-30-win10-UWP-剪贴板-Clipboard title author date CreateTime categories win10 UWP 剪贴板 Clipboard ...