代码

import pandas as pd
import numpy as np dates = pd.date_range('20130101', periods=6)
df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D']) # 行数,列数,赋值
df.iloc[0,1] = np.nan
df.iloc[1,2] = np.nan # 以行丢掉
print('-1-')
print(df.dropna(axis=0)) # 有nan就丢 这是默认情况
print('-2-')
print(df.dropna(axis=0, how='any')) # 全是nan再丢
print('-3-')
print(df.dropna(axis=0, how='all')) # 填上
print('-4-')
print(df.fillna(value=0)) # 判断每个的结果
print('-5-')
print(df.isnull()) # 整体内是不是有null
print('-6-')
print(np.any(df.isnull()) == True) # 读取保存数据 read_csv to_csv
df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d']) print('-7-')
print(df1)
print(df2)
print(df3) # axis=0 竖向合并
res = pd.concat([df1,df2,df3], axis=0)
print('-8-')
print(res) res = pd.concat([df1,df2,df3], axis=0, ignore_index=True)
print('-9-')
print(res) df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'],index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['b','c','d','e'],index=[2,3,4])
print('-10-')
print(df1)
print(df2) # 组合模式
res = pd.concat([df1,df2])
print('-11-')
print(res)
# defalut 并集
res = pd.concat([df1,df2], join='outer')
print('-12-')
print(res)
# 交集
res = pd.concat([df1,df2], join='inner')
print('-13-')
print(res) res = pd.concat([df1,df2], join='inner', ignore_index=True)
print('-14-')
print(res) # axis=1 左右合并 只考虑df1的index
res = pd.concat([df1,df2], axis=1,join_axes=[df1.index])
print('-15-')
print(res) # axis=1 左右合并
res = pd.concat([df1,df2], axis=1)
print('-16-')
print(res) df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2,columns=['b','c','d','e'],index=[2,3,4]) res = df1.append(df2, ignore_index=True)
print('-17-')
print(res) res = df1.append([df2, df3], ignore_index=True)
print('-18-')
print(res) s1 = pd.Series([1,2,3,4], index=['a','b','c','d'])
res = df1.append(s1,ignore_index=True) print('-19-')
print(res)

  

输出

-1-
A B C D
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-2-
A B C D
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-3-
A B C D
2013-01-01 0 NaN 2.0 3
2013-01-02 4 5.0 NaN 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-4-
A B C D
2013-01-01 0 0.0 2.0 3
2013-01-02 4 5.0 0.0 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-5-
A B C D
2013-01-01 False True False False
2013-01-02 False False True False
2013-01-03 False False False False
2013-01-04 False False False False
2013-01-05 False False False False
2013-01-06 False False False False
-6-
True
-7-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
a b c d
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
a b c d
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
-8-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
-9-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0
7 2.0 2.0 2.0 2.0
8 2.0 2.0 2.0 2.0
-10-
a b c d
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
b c d e
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
d:\Alex\WorkLog\34-deeplearning\myWorks\TransferLearningExample\mofangTransferLearning\1.py:62: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False res = pd.concat([df1,df2])
-11-
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
d:\Alex\WorkLog\34-deeplearning\myWorks\TransferLearningExample\mofangTransferLearning\1.py:66: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False res = pd.concat([df1,df2], join='outer')
-12-
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
-13-
b c d
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
-14-
b c d
0 0.0 0.0 0.0
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 1.0 1.0 1.0
-15-
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
-16-
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0
-17-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py:6201: FutureWarning: Sorting because non-concatenation axis
is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False sort=sort)
-18-
a b c d e
0 0.0 0.0 0.0 0.0 NaN
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 1.0 1.0 1.0 1.0 NaN
4 1.0 1.0 1.0 1.0 NaN
5 1.0 1.0 1.0 1.0 NaN
6 NaN 2.0 2.0 2.0 2.0
7 NaN 2.0 2.0 2.0 2.0
8 NaN 2.0 2.0 2.0 2.0
-19-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 2.0 3.0 4.0

  

16-numpy笔记-莫烦pandas-4的更多相关文章

  1. 15-numpy笔记-莫烦pandas-3

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  2. 14-numpy笔记-莫烦pandas-2

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  3. 18-numpy笔记-莫烦pandas-6-plot显示

    代码 import pandas as pd import numpy as np import matplotlib.pyplot as plt data = pd.Series(np.random ...

  4. 17-numpy笔记-莫烦pandas-5

    代码 import pandas as pd import numpy as np left=pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0', ...

  5. 13-numpy笔记-莫烦pandas-1

    代码 import pandas as pd import numpy as np s = pd.Series([1,3,6,np.nan, 44,1]) print('-1-') print(s) ...

  6. 11-numpy笔记-莫烦基础操作1

    代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...

  7. 12-numpy笔记-莫烦基本操作2

    代码 import numpy as np A = np.arange(3,15) print('-1-') print(A) print('-2-') print(A[3]) A = np.aran ...

  8. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

  9. Python pandas & numpy 笔记

    记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: impo ...

随机推荐

  1. Python socket & socket server

    socket 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket(套接字). 建立网络通信连接至少要一对socket.socket是对TCP/IP的封装 使用方法 ...

  2. numpy-数据清洗

    一.对G列数据进行清洗,根据['无','2000-3999','4000-5999','6000-7999','8000-9999','>10000']进行划分 去处重复值 # 删除重复值 # ...

  3. Java连载37-面向对象的封装性

    一.IDE上继续新建工程 1.在src目录下新建软件包:package机制后面再讲,目前先用着 2.给package命名一个名称:com.bjpowernode.java_learning 3.软件包 ...

  4. restful api的10个最佳实践

    Web API在过去的几年里非常盛行,因为它有着语法简单.规范化和轻量级的优点,因为得到广泛的推崇,很多过往的技术手段都慢慢转换为使用Web API来开发.而Web API通常使用的设计方式是REST ...

  5. webstorm关闭烦人的eslint语法检查

    使用了eslint语法检查之后发现JS代码里面处处是红线,通过右键菜单中的fix eslint problems选项又会发现页面代码的格式被eslint换行得不分青红皂白,索性关闭exlint语法检查 ...

  6. kubernetes 之一些报错

    1.kubelet与docker的Cgroup Driver不一致导致的报错 7月 :: kubeadm-master kubelet[]: W0701 :: watcher.go:] Error w ...

  7. MySQL问题记录——定义timestamp类型的数据

    MySQL问题记录——定义timestamp类型的数据 摘要:本文主要记录了在使用MySQL的过程中定义timestamp类型数据时遇到的问题以及解决方案. 问题重现 在Windows环境下安装MyS ...

  8. Python学习笔记之unittest测试类

    11-3 雇员:编写一个名为Employee 的类,其方法__init__()接受名.姓和年薪,并将它们都存储在属性中.编写一个名为give_raise()的方法,它默认将年薪增加5000美元,但也能 ...

  9. 2019 北森java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.北森等公司offer,岗位是Java后端开发,因为发展原因最终选择去了北森,入职一年时间了,也成为了面试官,之 ...

  10. Lucene搜索/索引过程笔记

    lucene索引文档过程: > 初始化IndexWriter > 构建Document > 调用IndexWriter.addDocument执行写入 > 初始化Documen ...