leetcode 688. “马”在棋盘上的概率
题目描述:
已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始。即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1)。
现有一个 “马”(也译作 “骑士”)位于 (r, c) ,并打算进行 K 次移动。
如下图所示,国际象棋的 “马” 每一步先沿水平或垂直方向移动 2 个格子,然后向与之相垂直的方向再移动 1 个格子,共有 8 个可选的位置。
思路分析:
思路1: 首先想到的是用dfs,但是这样会超时,最坏情况可能达到8的100次方。
思路2: 三维dp,dp[i][j][k]表示在点(i, j)上移动了k次后改点仍然位于棋盘上的概率。首先,初始条件dp[i][j][0]=1。接下来四层的循环,最外层为1到k次的移动,接下来是位置i,j的两重循环,最后是移动方向1到8的循环,dp[i][j][num] = sum(dp[i][j][num-1]*(1.0/8.0)),即当前点k次的概率为所有k-1次的概率之和。
代码:
class Solution {
public:
double knightProbability(int N, int K, int r, int c) {
if(K<=)
return 1.0;
if(N< || r< || r>=N || c< || c>=N)
return 0.0;
double dp[][][];
int direction[][] = {{-, -}, {, -}, {-, }, {, }, {-, -}, {-, }, {, -}, {, }};
for(int i=; i<N; i++)
for(int j=; j<N; j++)
dp[i][j][]=;
for(int num=; num<=K; num++)
{
for(int i=; i<N; i++)
{
for(int j=; j<N; j++)
{
double tmp = ;
for(int l=; l<; l++)
{
int x = i+direction[l][];
int y = j+direction[l][];
if(x< || y< || x>=N || y>=N)
continue;
tmp += (1.0/8.0)*dp[x][y][num-];
}
dp[i][j][num] = tmp;
}
}
}
return dp[r][c][K];
}
};
leetcode 688. “马”在棋盘上的概率的更多相关文章
- Java实现 LeetCode 688 “马”在棋盘上的概率(DFS+记忆化搜索)
688. "马"在棋盘上的概率 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有 ...
- [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
- LeetCode668马在棋盘上的概率
已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 (r, c) ...
- 688. Knight Probability in Chessboard棋子留在棋盘上的概率
[抄题]: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...
- LeetCode 688. Knight Probability in Chessboard
原题链接在这里:https://leetcode.com/problems/knight-probability-in-chessboard/description/ 题目: On an NxN ch ...
- LeetCode——688. Knight Probability in Chessboard
一.题目链接:https://leetcode.com/problems/knight-probability-in-chessboard/ 二.题目大意: 给定一个N*N的棋盘和一个初始坐标值(r, ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- C#LeetCode刷题-动态规划
动态规划篇 # 题名 刷题 通过率 难度 5 最长回文子串 22.4% 中等 10 正则表达式匹配 18.8% 困难 32 最长有效括号 23.3% 困难 44 通配符匹配 17.7% ...
- leetcode动态规划题目总结
Hello everyone, I am a Chinese noob programmer. I have practiced questions on leetcode.com for 2 yea ...
随机推荐
- 32、flex布局
html: <div class="parent"> <div class="son">1</div> <div cl ...
- Android中控件AutoCompleteTextView的使用方法和一些属性
<?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...
- 在页面获取本地电脑IP
<%@ page language="java" import="java.util.*" contentType="text/html; ch ...
- Charles弱网测试转载
一.破解版安装 工具好用是好用,但有个蛋疼的地方,非开源,非开源也就算了,还来个试用30分钟,当时的我就中这招了, 试用了之后发现这工具确实好用,对于测试工程师来说兼抓包定位协议类bug.设置网络阀来 ...
- Linux CentOS7 安装FTP服务器
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_39680564/article/de ...
- Mycat配置项详解
schema.xml文件配置中的balance属性和writeType属性: . balance=", 不开启读写分离机制,所有读操作都发送到当前可用的 writeHost 上. . ba ...
- Django 之 restframework 频率组件的使用
Django 之 restframework 频率组件的使用以及源码分析 频率组件的使用 第一步,先写一个频率类,继承SimpleRateThrottle 一定要在这个类里面配置一个scop='字符串 ...
- Ubuntu 14.04更新为国内阿里源解决apt-get install无法执行的问题
step01: sudo gedit /etc/apt/sources.list #将下面全部粘贴到sources.list中deb http://mirrors.aliyun.com/ubuntu/ ...
- Httpd服务入门知识-Httpd服务常见配置案例之Apache的工作做状态status页面
Httpd服务入门知识-Httpd服务常见配置案例之Apache的工作做状态status页面 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.status功能概述 status页 ...
- 浅谈Flask 中的 线程局部变量 request 原理
2017-11-27 17:25:11 晚橙 阅读数 600更多 分类专栏: Flask python 多线程 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出 ...