「HNOI2016」序列
传送门
Description
有 \(q\) 个询问,每个询问给定两个数\(l\) 和\(r\),求 \(a[l:r]\) 的不同子序列的最小值之和
Solution
校内模拟赛用了这道题,但是莫队只能拿\(80\)分,正解是猫树
当然还是莫队啦
考虑一个数加入时的贡献,就是以它为端点的区间的贡献
发现可以将现有的区间分成一段一段的,每段的最小值不同
这个可以用单调栈\(+\)倍增解决
于是就有了\(O(n\sqrt n\log n)\)的做法
但是显然过不了原题
所以想办法把\(\log\)去掉
以右端点为例,令\(f[i]\)表示\(a_i\)对区间\([1,i-1]\)的贡献
发现答案可以看成是\(f[i]-f[k],(k\leq i)\)然后再加上\(k\)以后的贡献
但是,这里的\(k\)得满足它是端点之一,且它往左的贡献很好算
那是什么?就是区间最小值啦,它往左的贡献就是\(a[k]*(k-nowl+1)\)
所以可以先预处理所有的\(f[i]\),用\(RMQ\)算法\(O(1)\)求出区间最小值就行了
复杂度\(O(n\sqrt n)\)
附上不能看的代码
Code
#include<bits/stdc++.h>
#define ll long long
#define db double
#define dbg1(x) cerr<<#x<<"="<<(x)<<" "
#define dbg2(x) cerr<<#x<<"="<<(x)<<"\n"
#define dbg3(x) cerr<<#x<<"\n"
#define int ll
using namespace std;
inline int read()
{
int f=1,x=0;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int MN=1e5+5,Mod=1e9+7;
int A,B,C,P;
ll lastAns=0;
inline int rnd(){return A=(A*B+(C^(int)(lastAns&0x7fffffffll))%P)%P;}
int n,q,l,r,a[MN];
bool f1,f2;
namespace solve1
{
int L[MN],R[MN],st[MN],top;
void Main()
{
int i;
st[top=0]=0;
for(i=1;i<=n;++i)
{
while(top&&a[st[top]]>=a[i]) --top;
L[i]=st[top]+1;
st[++top]=i;
}
st[top=0]=n+1;
for(i=n;i;--i)
{
while(top&&a[st[top]]>a[i]) --top;
R[i]=st[top]-1;
st[++top]=i;
}
while(q--)
{
l=read(),r=read();
ll ans=0ll;
for(i=l;i<=r;++i)
ans+=1ll*a[i]*1ll*(min(r,R[i])-i+1)*1ll*(i-max(l,L[i])+1);
printf("%lld\n",ans);
}
}
}
ll suf1[MN],suf2[MN];
void init()
{
int i;suf1[n+1]=suf2[n+1]=0ll;
for(i=n;i;--i)
suf1[i]=suf1[i+1]+1ll*a[i]*(n-i+1),
suf2[i]=suf2[i+1]+a[i];
}
ll cal(int x,int y){return suf1[x]-suf1[y+1]-1ll*(suf2[x]-suf2[y+1])*1ll*(n-y);}
struct Ques{int l,r,id;}_[MN];int tt;
namespace solve2
{
int Bl,bel[MN],nowl,nowr;
ll ans[MN],Sum,nowans;
ll s1[20][MN],s2[20][MN],p1[20][MN],p2[20][MN],f[MN],g[MN];
bool cmp(Ques x,Ques y)
{
return bel[x.l]!=bel[y.l]?bel[x.l]<bel[y.l]
:(bel[x.l]&1?x.r<y.r:x.r>y.r);
}
int st[MN],top;
ll cal(int x,bool ty)
{
int tmp=0;
if(!ty)
{
for(int i=17;~i;--i)
if(s1[i][x]==nowr) return tmp+s2[i][x];
else if(s1[i][x]<nowr)tmp+=s2[i][x],x=s1[i][x]+1;
return tmp+1ll*a[x]*(nowr-x+1);
}
else
{
for(int i=17;~i;--i)
if(p1[i][x]==nowl) return tmp+p2[i][x];
else if(p1[i][x]>nowl)tmp+=p2[i][x],x=p1[i][x]-1;
return tmp+1ll*a[x]*(x-nowl+1);
}
}
int Log[MN],mi[20][MN];
int cmp_(int x,int y){return a[x]<a[y]?x:y;}
int gmin(int x,int y){int og=Log[y-x+1];return cmp_(mi[og][x],mi[og][y-(1<<og)+1]);}
void Init()
{
int i,j;
for(i=2;i<=n;++i) Log[i]=Log[i>>1]+1;
for(i=1;i<=n;++i) mi[0][i]=i;
for(j=1;j<18;++j)for(i=1;i<=n;++i)if(i-1+(1<<j)<=n)mi[j][i]=cmp_(mi[j-1][i],mi[j-1][i+(1<<j-1)]);
st[top=0]=0;
for(i=1;i<=n;++i)
{
while(top&&a[st[top]]>=a[i]) --top;
p1[0][i]=st[top]+1;
p2[0][i]=1ll*(i-p1[0][i]+1)*a[i];
st[++top]=i;
}
st[top=0]=n+1;
for(i=n;i;--i)
{
while(top&&a[st[top]]>a[i]) --top;
s1[0][i]=st[top]-1;
s2[0][i]=1ll*(s1[0][i]-i+1)*a[i];
st[++top]=i;
}
for(i=1;i<18;++i)
for(j=1;j<=n;++j)
{
if(s1[i-1][j]>=n) s1[i][j]=n+1;
else s1[i][j]=s1[i-1][s1[i-1][j]+1],
s2[i][j]=s2[i-1][j]+s2[i-1][s1[i-1][j]+1];
if(p1[i-1][j]<=1) p1[i][j]=0;
else p1[i][j]=p1[i-1][p1[i-1][j]-1],
p2[i][j]=p2[i-1][j]+p2[i-1][p1[i-1][j]-1];
}
nowl=1;nowr=n;
for(i=1;i<=n;++i) f[i]=cal(i,1),g[i]=cal(i,0);
}
ll Cal(int x,int ty)
{
ll tmp=0ll;
if(ty)
{
int pos=gmin(nowl,x);
tmp=f[x]-f[gmin(nowl,x)];
tmp+=1ll*a[pos]*(pos-nowl+1);
}
else
{
int pos=gmin(x,nowr);
tmp=g[x]-g[gmin(x,nowr)];
tmp+=1ll*a[pos]*(nowr-pos+1);
}
return tmp;
}
void Add(int x,bool ty){nowans+=Cal(x,ty);}
void Del(int x,bool ty){nowans-=Cal(x,ty);}
void Main()
{
Init();Bl=sqrt((db)(n));
for(int i=1;i<=n;++i)bel[i]=(i+Bl-1)/Bl;
std::sort(_+1,_+tt+1,cmp);
nowl=1,nowr=0;Sum=0;nowans=0;
for(int i=1;i<=tt;++i)
{
while(nowr<_[i].r) Add(++nowr,1);
while(nowl>_[i].l) Add(--nowl,0);
while(nowr>_[i].r) Del(nowr--,1);
while(nowl<_[i].l) Del(nowl++,0);
if(f2) (Sum+=nowans)%=Mod;
else ans[_[i].id]=nowans;
}
if(f2) printf("%lld\n",Sum);
else for(int i=1;i<=tt;++i) printf("%lld\n",ans[i]);
}
}
signed main()
{
n=read();q=read();
if(f2) A=read(),B=read(),C=read(),P=read();
int i;bool c1=1,c2=1;a[0]=-Mod;
for(i=1;i<=n;++i) a[i]=read(),c1&=(a[i]==a[1]),c2&=(a[i]>a[i-1]);
if(c2) init();
if(n*q<=Mod&&!f1&&!f2) {solve1::Main();return 0;}
while(q--)
{
if(f2)
{
l=rnd()%n+1;r=rnd()%n+1;
if(l>r)swap(l,r);
}
else if(f1)
{
l=read();r=read();
l=((l+lastAns)%n+n)%n+1;
r=((r+lastAns)%n+n)%n+1;
if(l>r)swap(l,r);
}
else l=read(),r=read();
if(c1) printf("%lld\n",lastAns=1ll*(1ll*(r-l+1)*1ll*(r-l+2)/2)*1ll*a[1]);
else if(c2) printf("%lld\n",lastAns=cal(l,r));
else _[++tt].l=l,_[tt].r=r,_[tt].id=tt;
}
if(!c1&&!c2){solve2::Main();return 0;}
return 0;
}
Blog来自PaperCloud,未经允许,请勿转载,TKS!
「HNOI2016」序列的更多相关文章
- 「HNOI2016」序列 解题报告
「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...
- loj #2051. 「HNOI2016」序列
#2051. 「HNOI2016」序列 题目描述 给定长度为 n nn 的序列:a1,a2,⋯,an a_1, a_2, \cdots , a_na1,a2,⋯,an,记为 a[1: ...
- loj2051 「HNOI2016」序列
ref #include <algorithm> #include <iostream> #include <cstdio> #include <cmath& ...
- 「HNOI2016」数据结构大毒瘤
真是 \(6\) 道数据结构毒瘤... 开始口胡各种做法... 「HNOI2016」网络 整体二分+树状数组. 开始想了一个大常数 \(O(n\log^2 n)\) 做法,然后就被卡掉了... 发现直 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- 「HNOI2016」树 解题报告
「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...
- 「HNOI2016」网络 解题报告
「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...
- 「HNOI2016」最小公倍数 解题报告
「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...
- AC日记——「SDOI2017」序列计数 LibreOJ 2002
「SDOI2017」序列计数 思路: 矩阵快速幂: 代码: #include <bits/stdc++.h> using namespace std; #define mod 201704 ...
随机推荐
- mysql-表关系介绍(应用较多)
目录 表之间的关系(重点) foreign key (外键) 级联操作 (cascade) 两种级联操作 外键的使用 多对一(一对多) 多对多 一对一关系 表之间的关系(重点) foreign key ...
- Matlab外观模式
外观模式(Facade Pattern)隐藏系统的复杂性,并向客户端提供了一个客户端可以访问系统的接口.本文以计算机为例,用Matlab代码实现外观模式.计算机包括CPU.内存以及硬盘等这些部件.用户 ...
- 证券secuerity经济术语
证券按其性质不同,证券可以分为证据证券.凭证证券和有价证券三大类.证据证券只是单纯地证明一种事实的书面证明文件,如信用证.证据.提单等:凭证证券是指认定持证人是某种私权的合法权利者和持证人纪行的义务有 ...
- webpack练手项目之easySlide(三):commonChunks
Hello,大家好. 在之前两篇文章中: webpack练手项目之easySlide(一):初探webpack webpack练手项目之easySlide(二):代码分割 与大家分享了webpack的 ...
- mongos
官方文档:https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos mongos是MongoDB shard的缩写,它是 ...
- 利用yum下载rpm包并批量安装
一.下载rpm包 方法一:downloadonly 1.yum自动下载RPM包及其所有依赖的包至/root/rpm目录: yum install yum-plugin-downloadonly yum ...
- MySQL/MariaDB数据库的触发器
MySQL/MariaDB数据库的触发器 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.触发器概述 1>.什么是触发器 触发器的执行不是由程序调用,也不是由手工启动,而是 ...
- 微信小程序校验文件在浏览器无法打开
txt文件放在网站根目录后浏览器无法打开,同一目录的其他txt文件却可以打开.我试过了修改文件权限.修改所有者.修改文件编码等各种办法都没有用. 最后找到了.htaccess文件,原来在这个文件里修改 ...
- Java中线程池,你真的会用吗?ExecutorService ThreadPoolExcutor
原文:https://www.hollischuang.com/archives/2888 在<深入源码分析Java线程池的实现原理>这篇文章中,我们介绍过了Java中线程池的常见用法以及 ...
- 第二次作业之——AchaoCalculator
AchaoCalculator(阿超计算器) GIT地址 我的GitHub GIT用户名 Pastrain 学号后五位 62213 博客地址 我的博客地址 作业链接 作业内容 Part.1 配置VS中 ...