深度学习Keras框架笔记之TimeDistributedDense类
深度学习Keras框架笔记之TimeDistributedDense类使用方法笔记
例:
keras.layers.core.TimeDistributedDense(output_dim,init='glorot_uniform', activation='linear', weights=None
W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None,
input_dim=None, input_length=None)
这是一个基于时间维度的全连接层。主要就是用来构建RNN(递归神经网络)的,但是在构建RNN时需要设置return_sequences=True。
inputshape: 3维 tensor(nb_samples, timesteps,input_dim)
参数:
- output_dim: int >= 0,输出结果的维度
- init : 初始化权值的函数名称或Theano function。可以使用Keras内置的,也可以传递自己编写的Theano function。如果不给weights传递参数时,则该参数必须指明。
- activation : 激活函数名称或者Theano function。可以使用Keras内置的,也可以是传递自己编写的Theano function。如果不明确指定,那么将没有激活函数会被应用。
- weights :用于初始化权值的numpy arrays组成的list。这个List至少有1个元素,其shape为(input_dim, output_dim)。(如果指定init了,那么weights可以赋值None)
- W_regularizer:权值的规则化项,必须传入一个WeightRegularizer的实例(比如L1或L2规则化项)。
- b_regularizer:偏置值的规则化项,必须传入一个WeightRegularizer的实例(比如L1或L2规则化项)。
- activity_regularizer:网络输出的规则化项,必须传入一个ActivityRegularizer的实例。
- W_constraint:权值约束,必须传入一个constraints的实例。
- b_constraint:偏置约束,必须传入一个constraints的实例。
- input_dim:输入数据的维度。这个参数会在模型的第一层中用到。
- input_length:Length of input sequences, whenit is constant. This argument is required if you are going to connect Flattenthen Dense layers upstream (without it, the shape of the dense outputs cannotbe computed).
- 例如:
# input shape: (nb_samples, timesteps,10)
model.add(LSTM(5, return_sequences=True, input_dim=10)) # output shape: (nb_samples, timesteps, 5)
model.add(TimeDistributedDense(15)) # output shape:(nb_samples, timesteps, 15)
深度学习Keras框架笔记之TimeDistributedDense类的更多相关文章
- 深度学习Keras框架笔记之AutoEncoder类
深度学习Keras框架笔记之AutoEncoder类使用笔记 keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction= ...
- 深度学习Keras框架笔记之Dense类(标准的一维全连接层)
深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activat ...
- 深度学习Keras框架笔记之Activation类使用
使用 keras.layers.core.Activation(activation) Apply an activation function tothe input.(貌似是把激活函数应用到输入数 ...
- 深度学习Keras框架笔记之激活函数详解
激活函数也是神经网络中一个很重的部分.每一层的网络输出都要经过激活函数.比较常用的有linear,sigmoid,tanh,softmax等.Keras内置提供了很全的激活函数,包括像LeakyReL ...
- 深度学习Keras框架笔记之核心层基类
Keras的Layers,就是构成网络的每一层.Keras实现了很多层,包括核心层.卷基层.RNN网络层等诸多常用的网络结构.下面开介绍核心层中包含了哪些内容.因为这个核心层我现在还没有全部用到,所以 ...
- 从Theano到Lasagne:基于Python的深度学习的框架和库
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...
- 人工智能范畴及深度学习主流框架,IBM Watson认知计算领域IntelligentBehavior介绍
人工智能范畴及深度学习主流框架,IBM Watson认知计算领域IntelligentBehavior介绍 工业机器人,家用机器人这些只是人工智能的一个细分应用而已.图像识别,语音识别,推荐算法,NL ...
- 人工智能深度学习Caffe框架介绍,优秀的深度学习架构
人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要 ...
- 人工智能范畴及深度学习主流框架,谷歌 TensorFlow,IBM Watson认知计算领域IntelligentBehavior介绍
人工智能范畴及深度学习主流框架,谷歌 TensorFlow,IBM Watson认知计算领域IntelligentBehavior介绍 ================================ ...
随机推荐
- javaSE总结(二)--java面向对象
一.类和对象 (1)类 [修饰符] class 类名{ //修饰符1:private public protected 三个最多出现其一 //修饰符2:abstract final 两个最多出现其一 ...
- Listener学习
监听器Listener用于监听web应用中某些对象.信息的创建.销毁.增加,修改,删除等动作的发生,然后作出相应的响应处理.当范围对象的状态发生变化的时候,服务器自动调用监听器对象中的方法.常用于统计 ...
- C++ 工程师养成 每日一题fourth (reverse的使用)
题目: 将一句话的单词进行倒置,标点不倒置. 这道题最简单的解法是使用algorithm提供的reverse()函数 具体步骤我写在代码注释里面: #include <string> #i ...
- 选择类排序 (简单选择排序,堆排序)— c语言实现
选择类排序包括: (1) 简单选择排序 (2)树形选择排序 (3)堆排序 简单选择排序: [算法思想]:在第 i 趟简单选择排序中,从第 i 个记录开始,通过 n - i 次关键字比较,从 n - ...
- Spark实战电影点评系统(二)
二.通过DataFrame实战电影点评系统 DataFrameAPI是从Spark 1.3开始就有的,它是一种以RDD为基础的分布式无类型数据集,它的出现大幅度降低了普通Spark用户的学习门槛. D ...
- [动图演示]Redis 持久化 RDB/AOF 详解与实践【华为云技术分享】
Redis 是一个开源( BSD 许可)的,内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件.它支持的数据类型很丰富,如字符串.链表.集 合.以及散列等,并且还支持多种排序功能. 什么叫持 ...
- The four Day 给出一个平衡字符串,将它分割成尽可能多的平衡字符串
""" 在一个「平衡字符串」中,'L' 和 'R' 字符的数量是相同的. 给出一个平衡字符串 s,请你将它分割成尽可能多的平衡字符串. 返回可以通过分割得到的平衡字符串的 ...
- Mysql批量更新的三种方式
前言 批量插入由于mysql的VALUES原生支持,使用较为便利. 批量更新的写法一般有三种,在更新数量较少的情况下,前两种性能不相上下.但是在更新字段增加,更新条数较多(500以上)建议使用第三种写 ...
- Docker 四种网络模式
原文 https://www.cnblogs.com/gispathfinder/p/5871043.html 我们在使用docker run创建Docker容器时,可以用--net选项指定容器的网络 ...
- Mybatis中使用association及collection进行自关联示例(含XML版与注解版)
XML版本: 实体类: @Data @ToString @NoArgsConstructor public class Dept { private Integer id; private Strin ...