Javascript是世界上最受误解的语言,其实C++何尝不是。坊间流传的错误的C++学习方法一抓就是一大把。我自己在学习C++的过程中也走了许多弯路,浪费了不少时间。

为什么会存在这么多错误认识?原因主要有三个,一是C++语言的细节太多。二是一些著名的C++书籍总在(不管有意还是无意)暗示语言细节的重要性和有趣。三是现代C++库的开发哲学必须用到一些犄角旮旯的语言细节(但注意,是库设计,不是日常编程)。这些共同塑造了C++社群的整体心态和哲学。

C++中众多的细节虽然在库设计者手里面有其用武之地,但普通程序员则根本无需过多关注,尤其是没有实际动机的关注。一般性的编码实践准则,以及基本的编程能力和基本功,乃至基本的程序设计理论以及算法设计。才是真正需要花时间掌握的东西。

学习最佳编码实践比学习C++更重要。看优秀的代码也比埋头用差劲的编码方式写垃圾代码要有效。直接、清晰、明了、KISS地表达意图比玩编码花招要重要…

至于这种抠语言细节的哲学为何能在社群里面呈野火燎原之势,就是一个心理学的问题了。想像人们在论坛上讨论问题时,一个对语言把握很细致的人肯定能够得到更多的佩服,而由于论坛上的问题大多是小问题,所以解决实际问题的真正能力并不能得到显现,也就是说,知识型的人能够得到更多佩服,后者便成为动力和仿效的砝码。然而真正的编程能力是与语言细节没关系的,熟练运用一门语言能够帮你最佳表达你的意图,但熟练运用一门语言绝不意味着要把它的边边角角全都记住。懂得一些常识,有了编程的基本直觉,遇到一些细节错误的时候再去查书,是最节省时间的办法。

C++的书,Bjarne的圣经《The C++ Programming Language》是高屋建瓴的。《大规模C++程序设计》是挺务实的。《Accelerated C++》是最佳入门的。《C++ Templates》是仅作参考的。《C++ Template Metaprogramming》是精力过剩者可以玩一玩的,普通程序员碰都别碰的。《ISO.IEC C++ Standard 14882》不是拿来读的。。。

I suspect that people think too little about what they want to build, too little about what would make it correct, and too much about "efficiency" and following fashions of programming style. The key questions are always: "what do I want to do?" and "how do I know that I have done if?". Strategies for testing enters into my concerns from well before I write the firat line of code, and that despite my view that you have to write code very early - rather than wait until a design is complete.

Obviously, C++ is very complex. Obviously, people get lost. However, most peple get lost when they get diverted into becoming language lawyers rather than getting lost when they have a clear idea of what they want to express and simply look at C++ language features to see how to express it. Once you know data absreaction, class hierarchies (object-oriented programming), and parameterization with types (generic programming) in a fairly general way, the C++ language features fall in place.

Well, I don't think I made such a trade-off. I want elegant and efficient code. Sometimes I get it. These dichotomies (between efficiency versus correctness, efficiency versus programmer time, efficiency versus high-level, et cetera.) are bogus.

I think the real problem is that "we" (that is, we software developers) are in a permanent state of emergency, grasping at straws to get our work done. We perform many minor miracles through trial and error, excessive use of brute force, and lots and lots of testing, but--so often--it's not enough.

Software developers have become adept at the difficult art of building reasonably reliable systems out of unreliable parts. The snag is that often we do not know exactly how we did it: a system just "sort of evolved" into something minimally acceptable. Personally, I prefer to know when a system will work, and why it will.

There are more useful systems developed in languages deemed awful than in languages praised for being beautiful--many more. The purpose of a programming language is to help build good systems, where "good" can be defined in many ways. My brief definition is, correct, maintainable, and adequately fast. Aesthetics matter, but first and foremost a language must be useful; it must allow real-world programmers to express real-world ideas succinctly and affordably.

I'm sure that for every programmer that dislikes C++, there is one who likes it. However, a friend of mine went to a conference where the keynote speaker asked the audience to indicate by show of hands, one, how many people disliked C++, and two, how many people had written a C++ program. There were twice as many people in the first group than the second. Expressing dislike of something you don't know is usually known as prejudice. Also, complainers are always louder and more certain than proponents--reasonable people acknowledge flaws. I think I know more about the problems with C++ than just about anyone, but I also know how to avoid them and how to use C++'s strengths.

In any case, I don't think it is true that the programming languages are so difficult to learn. For example, every first-year university biology textbook contains more details and deeper theory than even an expert-level programming-language book. Most applications involve standards, operating systems, libraries, and tools that far exceed modern programming languages in complexity. What is difficult is the appreciation of the underlying techniques and their application to real-world problems. Obviously, most current languages have many parts that are unnecessarily complex, but the degree of those complexities compared to some ideal minimum is often exaggerated.

We need relatively complex language to deal with absolutely complex problems. I note that English is arguably the largest and most complex language in the world (measured in number of words and idioms), but also one of the most successful.

C++ provides a nice, extended case study in the evolutionary approach. C compatibility has been far harder to maintain than I or anyone else expected. Part of the reason is that C has kept evolving, partially guided by people who insist that C++ compatibility is neither necessary nor good for C. Another reason-- probably even more important--is that organizations prefer interfaces that are in the C/C++ subset so that they can support both languages with a single effort. This leads to a constant pressure on users not to use the most powerful C++ features and to myths about why they should be used "carefully," "infrequently," or "by experts only." That, combined with backwards-looking teaching of C++, has led to many failures to reap the potential benefits of C++ as a high-level language with powerful abstraction mechanisms.

The question is how deeply integrated into the application those system dependencies are. I prefer the application to be designed conceptually in isolation from the underlying system, with an explicitly defined interface to "the outer world," and then integrated through a thin layer of interface code.

Had I had a chance to name the style of programming I like best, it would have been "class-oriented programming", but then I'm not particularly good at finding snappy names. The school of thought that I belong to - rooted in Simula and related design philosophies - emphasizes the role of compile-time checking and flexible (static) type systems. Reasoning about the behavior of a program has to be rooted in the (static) structure of the source code. The focus should be on guarantees, invariant, etc. which are closely tied to that static structure. This is the only way I know to effectively deal with correctness. Testing is essential but cannot be systematic and complete without a good internal program structure - simple-minded blackbox testing of any significant system is infeasible because of the exponential explosion of states.

So, I recommend people to think in terms of class invariants, exception handling guarantees, highly structured resource management, etc. I should add that I intensely dislike debugging (as ah hoc and unsystematic) and strongly prefer reasoning about source code and systematic testing.

Pros: flexibility, generality, performance, portability, good tool support, available on more platforms than any competitor except C, access to hardware and system resources, good availability of programmers and designers. Cons: complexity, sub-optimal use caused by poor teaching and myths.

参考网页:https://blog.csdn.net/pongba/article/details/1611593

     https://blog.csdn.net/doulmi/article/details/6937800

你该怎么学习C++——思想层面的更多相关文章

  1. 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记

    第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...

  2. Django中间件、csrf跨站请求、csrf装饰器、基于django中间件学习编程思想

    django中间件 中间件介绍 什么是中间件? 官方的说法:中间件是一个用来处理Django的请求和响应的框架级别的钩子.它是一个轻量.低级别的插件系统,用于在全局范围内改变Django的输入和输出. ...

  3. linux学习的哲学层面的思考-架构

    参考:http://blog.chinaunix.net/uid-26119273-id-3356414.html 学习Linux,准备做产品的话,不要把Linux当成了终极目标(当然,这是对应用而言 ...

  4. 【UI插件】简单的日历插件(下)—— 学习MVC思想

    前言 我们上次写了一个简单的日历插件,但是只是一个半成品,而且做完后发现一些问题,于是我们今天尝试来解决这些问题 PS:距离上次貌似很久了 上次,我们大概遇到哪些问题呢: ① 既然想做一套UI库,那么 ...

  5. 从51跳新唐cortex-m0学习1——思想转变

    Cortex-M0学习第一帖 序言:这里先说一下,大家在看帖子时候,可能看见字数比较多的,可能只是先大概浏览一下,之后从中挑几段大概瞅瞅,但是我要说,如果你碰到一个适合的帖子,请仔细品读,这是我在论坛 ...

  6. deeplearning.ai 改善深层神经网络 week1 深度学习的实用层面 听课笔记

    1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/develop ...

  7. [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.10_1.12/梯度消失/梯度爆炸/权重初始化

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡 ...

  8. [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.9_归一化normalization

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9 归一化Normaliation 训练神经网络,其中一个加速训练的方法就是归一化输入(normalize inputs). 假设我们有一个 ...

  9. 【深度学习的实用层面】(一)训练,验证,测试集(Train/Dev/Test sets)

    在配置训练.验证.和测试数据集的过程中做出正确的决策会更好地创建高效的神经网络,所以需要对这三个名词有一个清晰的认识. 训练集:用来训练模型 验证集:用于调整模型的超参数,验证不同算法,检验哪种算法更 ...

随机推荐

  1. qt 静态库中貌似不能使用静态属性

    今天一个问题搞的很郁闷,原本好好的工程,这两天加了几个类之后链接不通过了. 发现过程略去不说,最后去掉了类中的static属性,编译通过了.具体原因没时间仔细查了,反正尽量避免在静态链接库里使用sta ...

  2. js不常用,但很实用的功能

    =============== 通知: 博主已迁至<掘金>码字,博客园可能以后不再更新,掘金地址:https://juejin.im/post/5a1a6a6551882534af25a8 ...

  3. async await 总结

    1.async await成对出现,await再async定义的函数内 2.async定义的是函数 3.async 返回一个Promise 4.async 函数中 return 的结果将作为回调的参数 ...

  4. 编程语言的类型修饰符modifiers

    编程语言修饰符,代表语言要素与常规表达不同的语义: 这些语义的不同需要编译器和运行时作出不同的解释: 作用域.访问: 生命周期: 同步异步: 多态: 纯函数: 注解: 懒加载: 编译器合成:

  5. hdu1010-Tempter of the Bone-(dfs+奇偶剪枝)

    http://acm.hdu.edu.cn/showproblem.php?pid=1010 翻译:有只狗被困了,S是起点,D是门,W是墙不能走,‘ . ’是可以走的路,走一次就会在1秒内坍塌,也就是 ...

  6. 我的首次AK记

    哈哈哈!本蒟蒻终于在今天中午机房测试中AK全场了(其实没啥技术含量,只有5个水题,对,全都很水)

  7. winform窗体的常用属性

  8. 验证码破解 | Selenium模拟登陆微博

    模拟登陆微博相对来说,并不难.验证码是常规的5个随机数字字母的组合,识别起来也比较容易.主要是用到许多Selenium中的知识,如定位标签.输入信息.点击等.如对Selenium的使用并不熟悉,请先移 ...

  9. The real universe

  10. Jmeter(四十七)_性能测试统计超时率

    概述 今天做一个性能测试的案例.需求中给出并发人数和业务时间段.根据2,5,8原则,统计响应超时率 实际场景 1:登录--考勤打卡--退出 2:并发人数200人,业务持续时间5分钟 3:要求登录响应时 ...