For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges(each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1 :

Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]]

        0
|
1
/ \
2 3 Output: [1]

Example 2 :

Input: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
\ | /
3
|
4
|
5 Output: [3, 4]

Note:

  • According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
  • The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

Java:

public List<Integer> findMinHeightTrees(int n, int[][] edges) {
List<Integer> result = new ArrayList<Integer>();
if(n==0){
return result;
}
if(n==1){
result.add(0);
return result;
} ArrayList<HashSet<Integer>> graph = new ArrayList<HashSet<Integer>>();
for(int i=0; i<n; i++){
graph.add(new HashSet<Integer>());
} for(int[] edge: edges){
graph.get(edge[0]).add(edge[1]);
graph.get(edge[1]).add(edge[0]);
} LinkedList<Integer> leaves = new LinkedList<Integer>();
for(int i=0; i<n; i++){
if(graph.get(i).size()==1){
leaves.offer(i);
}
} if(leaves.size()==0){
return result;
} while(n>2){
n = n-leaves.size(); LinkedList<Integer> newLeaves = new LinkedList<Integer>(); for(int l: leaves){
int neighbor = graph.get(l).iterator().next();
graph.get(neighbor).remove(l);
if(graph.get(neighbor).size()==1){
newLeaves.add(neighbor);
}
} leaves = newLeaves;
} return leaves;
}  

Python:

class Solution(object):
def findMinHeightTrees(self, n, edges):
"""
:type n: int
:type edges: List[List[int]]
:rtype: List[int]
"""
if n == 1:
return [0] neighbors = collections.defaultdict(set)
for u, v in edges:
neighbors[u].add(v)
neighbors[v].add(u) pre_level, unvisited = [], set()
for i in xrange(n):
if len(neighbors[i]) == 1: # A leaf.
pre_level.append(i)
unvisited.add(i) # A graph can have 2 MHTs at most.
# BFS from the leaves until the number
# of the unvisited nodes is less than 3.
while len(unvisited) > 2:
cur_level = []
for u in pre_level:
unvisited.remove(u)
for v in neighbors[u]:
if v in unvisited:
neighbors[v].remove(u)
if len(neighbors[v]) == 1:
cur_level.append(v)
pre_level = cur_level return list(unvisited)

C++:

// Time:  O(n)
// Space: O(n) class Solution {
public:
vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) {
if (n == 1) {
return {0};
} unordered_map<int, unordered_set<int>> neighbors;
for (const auto& e : edges) {
int u, v;
tie(u, v) = e;
neighbors[u].emplace(v);
neighbors[v].emplace(u);
} vector<int> pre_level, cur_level;
unordered_set<int> unvisited;
for (int i = 0; i < n; ++i) {
if (neighbors[i].size() == 1) { // A leaf.
pre_level.emplace_back(i);
}
unvisited.emplace(i);
} // A graph can have 2 MHTs at most.
// BFS from the leaves until the number
// of the unvisited nodes is less than 3.
while (unvisited.size() > 2) {
cur_level.clear();
for (const auto& u : pre_level) {
unvisited.erase(u);
for (const auto& v : neighbors[u]) {
if (unvisited.count(v)) {
neighbors[v].erase(u);
if (neighbors[v].size() == 1) {
cur_level.emplace_back(v);
}
}
}
}
swap(pre_level, cur_level);
} vector<int> res(unvisited.begin(), unvisited.end());
return res;
}
};

  

  

类似题目:

Course Schedule II

Course Schedule

Clone Graph

All LeetCode Questions List 题目汇总

[LeetCode] 310. Minimum Height Trees 最小高度树的更多相关文章

  1. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  2. [LeetCode] 310. Minimum Height Trees 解题思路

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  3. leetcode@ [310] Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  4. 310. Minimum Height Trees -- 找出无向图中以哪些节点为根,树的深度最小

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  5. 【LeetCode】310. Minimum Height Trees 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 BFS 相似题目 参考资料 日期 题目地址:http ...

  6. 310. Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  7. [LeetCode] 310. Minimum Height Trees_Medium tag: BFS

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  8. [Swift]LeetCode310. 最小高度树 | Minimum Height Trees

    For an undirected graph with tree characteristics, we can choose any node as the root. The result gr ...

  9. 最小高度的树 Minimum Height Trees

    2018-09-24 12:01:38 问题描述: 问题求解: 毫无疑问的一条非常好的题目,采用的解法是逆向的BFS,也就是从叶子节点开始遍历,逐步向中心靠拢,最终留下的叶子节点就是答案. publi ...

随机推荐

  1. BZOJ-1975: 魔法猪学院 (K短路:A*+SPFA)

    题意:有N种化学元素,有M种转化关系,(u,v,L)表示化学物质由u变为v需要L能量,现在你有E能量,问最多有多少种不同的途径,使得1转为为N,且总能量不超过E. 思路:可以转为为带权有向图,即是求前 ...

  2. linux 统计某个文件的行数

    今日思语:迷茫的时候,看看身边那些优秀的人,他们还在那么努力,或许你就可以有点方向和动力了 在linux系统中,我们经常会对文件做行数统计,可以使用如下命令 wc -l file #file为具体的文 ...

  3. 使用terraform 生成自签名证书

    terraform 是一个很不错的基础设施工具,我们可以用来做关于基础设施部署的事情,可以实现基础设施即代码 以下演示一个简单的自签名证书的生成(使用tls provider) main.tf 文件 ...

  4. CSPS_113

    这场还是Dybala的差点AK场 可是我T3伪了只拿了20分 如果这... T1 xjb猜了个结论就过对拍 T2 鸡还儿竖+贪心 T3 正着贪心一遍,被卡了,只有20分 可是如果反着再来亿遍 就会有5 ...

  5. 【cf contest 1119 H】Triple

    题目 给出 \(n\) 个三元组\(\{ a_i,b_i,c_i \}\)和\(x,y,z\): 将每个三元组扩展成(\(x\)个\(a_i\),\(y\)个\(b_i\),\(z\)个\(c_i\) ...

  6. mysql开放远程连接

    1.检查端口是否被监听,没有的话请启动mysql. netstat -atnp | grep 3306 2.检查用户是否具备远程连接,即host字段值不是 % mysql -uroot -p你的密码 ...

  7. 【18NOIP普及组】对称二叉树(信息学奥赛一本通 1981)(洛谷 5018)

    [题目描述] 一棵有点权的有根树如果满足以下条件,则被轩轩称为对称二叉树: 1.二叉树: 2.将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等. 下图中节点内的数字为权值,节点外 ...

  8. mysql 获取数学成绩最高以及最低的同学

    mysql> select * from test; +----+----------+-------+-----------+ | id | name | score | subject | ...

  9. PHP base_convert() 函数

    16进制转8进制 <?php $hex = "E196"; echo base_convert($hex,,); ?> 8进制数转换为10进制数 <?php $o ...

  10. 使用深度学习的超分辨率介绍 An Introduction to Super Resolution using Deep Learning

    使用深度学习的超分辨率介绍 关于使用深度学习进行超分辨率的各种组件,损失函数和度量的详细讨论. 介绍 超分辨率是从给定的低分辨率(LR)图像恢复高分辨率(HR)图像的过程.由于较小的空间分辨率(即尺寸 ...