点此看题面

大致题意: 求\(\sum_{n=1}^{5\times10^8}((\sum_{i=1}^n\phi(n^i))(mod\ n+1))\)。

大力推式子

单独考虑\((\sum_{i=1}^n\phi(n^i))(mod\ n+1)\)。

由于\(\phi\)有一个显然的性质:

\[\phi(x^y)=\phi(x)\cdot x^{y-1}
\]

所以上面的式子就可以推成:

\[(\phi(n)\sum_{i=1}^nn^{i-1})(mod\ n+1)
\]

又由于\(n\equiv-1(mod\ n+1)\),所以上式即为:

\[(\phi(n)\sum_{i=1}^n(-1)^{i-1})(mod\ n+1)
\]

观察\(\sum_{i=1}^n(-1)^{i-1}\)可知,这个式子在\(n\)为奇数时为\(1\),\(n\)为偶数时为\(0\)。

而显然\(\phi(n)<n<n+1\),所以最后我们要求的就是\(1\sim5*10^8\)内所有奇数的\(\phi\)值之和。

注意开数组

注意到一点,\(5\times10^8\)的数组即使在本地也是开不下的。

怎么办?杜教筛。

好吧,实际上可以不用杜教筛。

考虑到我们只需要奇数的\(\phi\)值,而\(\phi\)是一个积性函数,显然我们不可能从偶数的\(\phi\)值转移得出奇数的\(\phi\)值,因此筛偶数是不必要的。

这样一来,对于一个奇数\(x\),我们用数组第\(\frac{x+1}2\)位去存储它,就实现了数组大小减半,开得下了。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 500000000
#define LL long long
using namespace std;
class LinearSiever//线性筛
{
private:
#define LS 250000000
#define PS 15000000
int Pt,P[PS+5];bool vis[LS+5];
public:
int phi[LS+5];//存储phi值
I void Sieve(CI S)
{
RI i,j;for(phi[1]=1,i=3;i<=S;i+=2)//与普通线性筛几乎无异,但注意下标变化
{
!vis[i+1>>1]&&(P[++Pt]=i,phi[i+1>>1]=i-1);
for(j=1;j<=Pt&&1LL*i*P[j]<=S;++j)
if(vis[i*P[j]+1>>1]=1,i%P[j]) phi[i*P[j]+1>>1]=phi[i+1>>1]*(P[j]-1);
else {phi[i*P[j]+1>>1]=phi[i+1>>1]*P[j];break;}
}
}
}L;
int main()
{
RI i;LL ans=0;for(L.Sieve(N),i=1;i<=(N+1>>1);++i) ans+=L.phi[i];//统计答案
return printf("%lld",ans),0;//输出答案
}

运行结果

50660591862310323

【PE512】Sums of totients of powers(欧拉函数)的更多相关文章

  1. POJ1284 Primitive Roots [欧拉函数,原根]

    题目传送门 Primitive Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5434   Accepted:  ...

  2. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  3. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  4. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  5. COGS2531. [HZOI 2016]函数的美 打表+欧拉函数

    题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...

  6. poj2478 Farey Sequence (欧拉函数)

    Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...

  7. 51Nod-1136 欧拉函数

    51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制: ...

  8. 欧拉函数 - HDU1286

    欧拉函数的作用: 有[1,2.....n]这样一个集合,f(n)=这个集合中与n互质的元素的个数.欧拉函数描述了一些列与这个f(n)有关的一些性质,如下: 1.令p为一个素数,n = p ^ k,则 ...

  9. FZU 1759 欧拉函数 降幂公式

    Description   Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...

  10. hdu 3307 Description has only two Sentences (欧拉函数+快速幂)

    Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

随机推荐

  1. 在Ubuntu18.04.2LTS上安装搜狗输入法

    在Ubuntu18.04.2LTS上安装搜狗输入法 一.前言 最近项目使用到了Linux系统,因此就安装了Ubuntu18.04.2这个最新的LTS的OS.整体的使用效果是不敢恭维的,特别是使用虚拟机 ...

  2. RedisHelper (C#)

    <add key="RedisServers" value="172.20.2.90:9379,password=Aa+123456789" /> ...

  3. 利用Python爬虫刷店铺微博等访问量最简单有效教程

    一.安装必要插件 测试环境:Windows 10 + Python 3.7.0 (1)安装Selenium pip install selenium (2)安装Requests pip install ...

  4. Python 文件readlines()方法

    原文连接:https://www.runoob.com/python/file-readlines.html readlines()方法用于读取所有行(直到结束符EOF)并返回列表,该列表可以由pyt ...

  5. 使用 jQuery.TypeAhead 让文本框自动完成 (三)(服务器返回 JSON 复杂对象数组)

    项目地址:https://github.com/twitter/typeahead.js 直接贴代码了: @section headSection { <script type="te ...

  6. 第五篇 openvslam建图与优化模块梳理

    建图模块 mapping_module在初始化系统的时候进行实例化,在构建实例的时候会实例化local_map_cleaner和local_bundle_adjuster.系统启动的时候会在另外一个线 ...

  7. python——Tkinter图形化界面及threading多线程

    Tkinter模块("Tk 接口")是Python的标准Tk GUI工具包的接口.Tk和Tkinter可以在大多数的Unix平台下使用,同样可以应用在Windows和Macinto ...

  8. QT 使用QSetting读取配置文件中的中文乱码解决方案

    windows下方案: 首先需要将ini文件改成UTF-8或GB2312编码格式,可以通过notepad++工具实现.然后在配置项中填入中文,如下: 接着在程序中使用 QSettings settin ...

  9. python 检查站点是否可以访问

    最近碰到系统有时候会访问不了,想写一个程序来检测站点是不是可以访问的功能,正好在学python,于是写了一个方法来练练手,直接上代码. import urllib.request import smt ...

  10. Django models 单表查询

    从数据库中查询出来的结果一般是一个集合,这个集合叫做 QuerySet 1. 查看Django QuerySet执行的SQL .query.__str__()或 .query属性打印执行的sql语句 ...