Softmax学习笔记
softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!
他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1。
实际应用中,使用 Softmax 需要注意数值溢出的问题。因为有指数运算,如果 V 数值很大,经过指数运算后的数值往往可能有溢出的可能。所以,需要对 V 进行一些数值处理:即 V 中的每个元素减去 V 中的最大值。
相应的python示例代码如下:
scores = np.array([123, 456, 789]) # example with 3 classes and each having large scores
scores -= np.max(scores) # scores becomes [-666, -333, 0]
p = np.exp(scores) / np.sum(np.exp(scores))
softmax VS k个二元分类器
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。
sigmoid将一个值映射到(0,1)的区间,用来做二分类。
而 softmax 把一个 k 维的real value向量(a1,a2,a3,a4….)映射成一个(b1,b2,b3,b4….),其中 bi 是一个 0~1 的常数,输出神经元之和为 1.0,所以相当于概率值,然后可以根据 bi 的概率大小来进行多分类的任务。
二分类问题时 sigmoid 和 softmax 是一样的,求的都是 cross entropy loss(交叉熵损失),而 softmax 可以用于多分类问题
Softmax学习笔记的更多相关文章
- ufldl学习笔记和编程作业:Softmax Regression(softmax回报)
ufldl学习笔记与编程作业:Softmax Regression(softmax回归) ufldl出了新教程.感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量 ...
- ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)
ufldl学习笔记与编程作业:Softmax Regression(vectorization加速) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learn ...
- UFLDL深度学习笔记 (二)SoftMax 回归(矩阵化推导)
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细 ...
- [DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工 ...
- DeepLearning.ai学习笔记(三)结构化机器学习项目--week2机器学习策略(2)
一.进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差.想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 还是以猫 ...
- NLP︱高级词向量表达(二)——FastText(简述、学习笔记)
FastText是Facebook开发的一款快速文本分类器,提供简单而高效的文本分类和表征学习的方法,不过这个项目其实是有两部分组成的,一部分是这篇文章介绍的 fastText 文本分类(paper: ...
- Machine Learning 学习笔记
点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...
- 深度学习笔记(七)SSD 论文阅读笔记简化
一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针 ...
- Deep learning with Python 学习笔记(11)
总结 机器学习(machine learning)是人工智能的一个特殊子领域,其目标是仅靠观察训练数据来自动开发程序[即模型(model)].将数据转换为程序的这个过程叫作学习(learning) 深 ...
随机推荐
- 完全卸载Oracle(亲身体验完整版)
完全卸载Oracle 用Oracle自带的卸载程序不能从根本上卸载Oracle,从而为下次的安装留下隐患,那么怎么才能完全卸载Oracle呢? 那就是直接注册表清除,步骤如下: 开始->设置-& ...
- mysql 导出查询结果
show variables like '%secure%'; 看看导出位置 SELECT * FROM tb WHERE sn = '1' LIMIT 1,10into outfile '/var/ ...
- TortoiseGit用户名密码的更换方法介绍
http://www.downza.cn/xy/53171.html 有时候因实际需求要更换TortoiseGit用户名密码,怎么办呢?下文就是TortoiseGit用户名密码的更换方法介绍,一起看看 ...
- 将innodb置为只读模式
1.关闭change bufferset global.innodb_change_buffering=0; 2.将mysql执行slow shutdown(即干净关闭)set global.inno ...
- 运维笔记--SqlServer相关版本&下载&安装&配置远程连接
下载地址:SqlServer2008为例 SqlServer2008:https://www.microsoft.com/en-us/download/details.aspx?id=1695 Sql ...
- LeetCode 100. Same Tree (判断树是否完全相同)
100. Same Tree Given two binary trees, write a function to check if they are the same or not. Two bi ...
- hackbar简单安装使用教程
安装hackbar: 在火狐的附加组件中搜索“hackbar”,将它添加到火狐浏览器中, 重启后Firefox后安装完成,按F9键打开我们就会看到在地址栏下面会出现一个大框框就是hackbar了 框框 ...
- IDEA中Lombok插件的安装及使用
这个插件的好处在于可以让我们的代码更简洁,减少一些重复的工作,最常用的就是@Data注解,比如在实体类上使用@Data注解,实体类的各个属性就不需要书写get和set方法. 安装方法: 1.File→ ...
- HTML5 VUE单页应用 SEO 优化之 预渲染(prerender-spa-plugin)
前言:当前 SPA 架构流行的趋势如日中天,前后端分离的业务模式已经成为互联网开发的主流方式,但是 单页面 应用始终存在一个痛点,那就是 SEO, 对于那些需要推广,希望能在百度搜索时排名靠前的网站而 ...
- Promise.resolve解析
总结自:https://blog.csdn.net/lq15310444798/article/details/81275278 Promise.resolve返回一个Promise实例 参数分4种情 ...