AVL树的介绍

AVL树是高度平衡的而二叉树。它的特点是:AVL树中任何节点的两个子树的高度最大差别为1。

上面的两张图片,左边的是AVL树,它的任何节点的两个子树的高度差别都<=1;而右边的不是AVL树,因为7的两颗子树的高度相差为2(以2为根节点的树的高度是3,而以8为根节点的树的高度是1)。

AVL树的C++实现

1. 节点

1.1 AVL树节点

template <class T>
class AVLTreeNode{
public:
T key; // 关键字(键值)
int height; // 高度
AVLTreeNode *left; // 左孩子
AVLTreeNode *right; // 右孩子 AVLTreeNode(T value, AVLTreeNode *l, AVLTreeNode *r):
key(value), height(0),left(l),right(r) {}
};

  

AVLTreeNode是AVL树的节点类,它包括的几个组成对象:
(01) key -- 是关键字,是用来对AVL树的节点进行排序的。
(02) left -- 是左孩子。
(03) right -- 是右孩子。
(04) height -- 是高度。

1.2 AVL树

template <class T>
class AVLTree {
private:
AVLTreeNode<T> *mRoot; // 根结点 public:
AVLTree();
~AVLTree(); // 获取树的高度
int height();
// 获取树的高度
int max(int a, int b); // 前序遍历"AVL树"
void preOrder();
// 中序遍历"AVL树"
void inOrder();
// 后序遍历"AVL树"
void postOrder(); // (递归实现)查找"AVL树"中键值为key的节点
AVLTreeNode<T>* search(T key);
// (非递归实现)查找"AVL树"中键值为key的节点
AVLTreeNode<T>* iterativeSearch(T key); // 查找最小结点:返回最小结点的键值。
T minimum();
// 查找最大结点:返回最大结点的键值。
T maximum(); // 将结点(key为节点键值)插入到AVL树中
void insert(T key); // 删除结点(key为节点键值)
void remove(T key); // 销毁AVL树
void destroy(); // 打印AVL树
void print();
private:
// 获取树的高度
int height(AVLTreeNode<T>* tree) ; // 前序遍历"AVL树"
void preOrder(AVLTreeNode<T>* tree) const;
// 中序遍历"AVL树"
void inOrder(AVLTreeNode<T>* tree) const;
// 后序遍历"AVL树"
void postOrder(AVLTreeNode<T>* tree) const; // (递归实现)查找"AVL树x"中键值为key的节点
AVLTreeNode<T>* search(AVLTreeNode<T>* x, T key) const;
// (非递归实现)查找"AVL树x"中键值为key的节点
AVLTreeNode<T>* iterativeSearch(AVLTreeNode<T>* x, T key) const; // 查找最小结点:返回tree为根结点的AVL树的最小结点。
AVLTreeNode<T>* minimum(AVLTreeNode<T>* tree);
// 查找最大结点:返回tree为根结点的AVL树的最大结点。
AVLTreeNode<T>* maximum(AVLTreeNode<T>* tree); // LL:左左对应的情况(左单旋转)。
AVLTreeNode<T>* leftLeftRotation(AVLTreeNode<T>* k2); // RR:右右对应的情况(右单旋转)。
AVLTreeNode<T>* rightRightRotation(AVLTreeNode<T>* k1); // LR:左右对应的情况(左双旋转)。
AVLTreeNode<T>* leftRightRotation(AVLTreeNode<T>* k3); // RL:右左对应的情况(右双旋转)。
AVLTreeNode<T>* rightLeftRotation(AVLTreeNode<T>* k1); // 将结点(z)插入到AVL树(tree)中
AVLTreeNode<T>* insert(AVLTreeNode<T>* &tree, T key); // 删除AVL树(tree)中的结点(z),并返回被删除的结点
AVLTreeNode<T>* remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z); // 销毁AVL树
void destroy(AVLTreeNode<T>* &tree); // 打印AVL树
void print(AVLTreeNode<T>* tree, T key, int direction);
};

  

AVLTree是AVL树对应的类。它包含AVL树的根节点mRoot和AVL树的基本操作接口。需要说明的是:AVLTree中重载了许多函数。重载的目的是区分内部接口和外部接口,例如insert()函数而言,insert(tree, key)是内部接口,而insert(key)是外部接口。

1.2 树的高度

/*
* 获取树的高度
*/
template <class T>
int AVLTree<T>::height(AVLTreeNode<T>* tree)
{
if (tree != NULL)
return tree->height; return 0;
} template <class T>
int AVLTree<T>::height()
{
return height(mRoot);
}

  

关于高度,有的地方将"空二叉树的高度是-1",而本文采用维基百科上的定义:树的高度为最大层次。即空的二叉树的高度是0,非空树的高度等于它的最大层次(根的层次为1,根的子节点为第2层,依次类推)。

1.3 比较大小

/*
* 比较两个值的大小
*/
template <class T>
int AVLTree<T>::max(int a, int b)
{
return a>b ? a : b;
}

  

2. 旋转

如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。下面给出它们的示意图:

上图中的4棵树都是"失去平衡的AVL树",从左往右的情况依次是:LL、LR、RL、RR。除了上面的情况之外,还有其它的失去平衡的AVL树,如下图:

上面的两张图都是为了便于理解,而列举的关于"失去平衡的AVL树"的例子。总的来说,AVL树失去平衡时的情况一定是LL、LR、RL、RR这4种之一,它们都由各自的定义:

(1) LL:LeftLeft,也称为"左左"。插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面LL情况中,由于"根节点(8)的左子树(4)的左子树(2)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。

(2) LR:LeftRight,也称为"左右"。插入或删除一个节点后,根节点的左子树的右子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面LR情况中,由于"根节点(8)的左子树(4)的左子树(6)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。

(3) RL:RightLeft,称为"右左"。插入或删除一个节点后,根节点的右子树的左子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面RL情况中,由于"根节点(8)的右子树(12)的左子树(10)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。

(4) RR:RightRight,称为"右右"。插入或删除一个节点后,根节点的右子树的右子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面RR情况中,由于"根节点(8)的右子树(12)的右子树(14)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。

前面说过,如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。AVL失去平衡之后,可以通过旋转使其恢复平衡,下面分别介绍"LL(左左),LR(左右),RR(右右)和RL(右左)"这4种情况对应的旋转方法。

2.1 LL的旋转

LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:

图中左边是旋转之前的树,右边是旋转之后的树。从中可以发现,旋转之后的树又变成了AVL树,而且该旋转只需要一次即可完成。
对于LL旋转,你可以这样理解为:LL旋转是围绕"失去平衡的AVL根节点"进行的,也就是节点k2;而且由于是LL情况,即左左情况,就用手抓着"左孩子,即k1"使劲摇。将k1变成根节点,k2变成k1的右子树,"k1的右子树"变成"k2的左子树"。

LL的旋转代码

/*
* LL:左左对应的情况(左单旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::leftLeftRotation(AVLTreeNode<T>* k2)
{
AVLTreeNode<T>* k1; k1 = k2->left;
k2->left = k1->right;
k1->right = k2; k2->height = max( height(k2->left), height(k2->right)) + 1;
k1->height = max( height(k1->left), k2->height) + 1; return k1;
}

  

2.2 RR的旋转

理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:

图中左边是旋转之前的树,右边是旋转之后的树。RR旋转也只需要一次即可完成。

RR的旋转代码

/*
* RR:右右对应的情况(右单旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::rightRightRotation(AVLTreeNode<T>* k1)
{
AVLTreeNode<T>* k2; k2 = k1->right;
k1->right = k2->left;
k2->left = k1; k1->height = max( height(k1->left), height(k1->right)) + 1;
k2->height = max( height(k2->right), k1->height) + 1; return k2;
}

  

2.3 LR的旋转

LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。如下图:

第一次旋转是围绕"k1"进行的"RR旋转",第二次是围绕"k3"进行的"LL旋转"。

LR的旋转代码

/*
* LR:左右对应的情况(左双旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::leftRightRotation(AVLTreeNode<T>* k3)
{
k3->left = rightRightRotation(k3->left); return leftLeftRotation(k3);
}

  

2.4 RL的旋转

RL是与LR的对称情况!RL恢复平衡的旋转方法如下:

第一次旋转是围绕"k3"进行的"LL旋转",第二次是围绕"k1"进行的"RR旋转"。

RL的旋转代码

/*
* RL:右左对应的情况(右双旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::rightLeftRotation(AVLTreeNode<T>* k1)
{
k1->right = leftLeftRotation(k1->right); return rightRightRotation(k1);
}

  

3. 插入

插入节点的代码

/*
* 将结点插入到AVL树中,并返回根节点
*
* 参数说明:
* tree AVL树的根结点
* key 插入的结点的键值
* 返回值:
* 根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::insert(AVLTreeNode<T>* &tree, T key)
{
if (tree == NULL)
{
// 新建节点
tree = new AVLTreeNode<T>(key, NULL, NULL);
if (tree==NULL)
{
cout << "ERROR: create avltree node failed!" << endl;
return NULL;
}
}
else if (key < tree->key) // 应该将key插入到"tree的左子树"的情况
{
tree->left = insert(tree->left, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->left) - height(tree->right) == 2)
{
if (key < tree->left->key)
tree = leftLeftRotation(tree);
else
tree = leftRightRotation(tree);
}
}
else if (key > tree->key) // 应该将key插入到"tree的右子树"的情况
{
tree->right = insert(tree->right, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->right) - height(tree->left) == 2)
{
if (key > tree->right->key)
tree = rightRightRotation(tree);
else
tree = rightLeftRotation(tree);
}
}
else //key == tree->key)
{
cout << "添加失败:不允许添加相同的节点!" << endl;
} tree->height = max( height(tree->left), height(tree->right)) + 1; return tree;
} template <class T>
void AVLTree<T>::insert(T key)
{
insert(mRoot, key);
}

  

4. 删除

删除节点的代码

/*
* 删除结点(z),返回根节点
*
* 参数说明:
* tree AVL树的根结点
* z 待删除的结点
* 返回值:
* 根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z)
{
// 根为空 或者 没有要删除的节点,直接返回NULL。
if (tree==NULL || z==NULL)
return NULL; if (z->key < tree->key) // 待删除的节点在"tree的左子树"中
{
tree->left = remove(tree->left, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->right) - height(tree->left) == 2)
{
AVLTreeNode<T> *r = tree->right;
if (height(r->left) > height(r->right))
tree = rightLeftRotation(tree);
else
tree = rightRightRotation(tree);
}
}
else if (z->key > tree->key)// 待删除的节点在"tree的右子树"中
{
tree->right = remove(tree->right, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->left) - height(tree->right) == 2)
{
AVLTreeNode<T> *l = tree->left;
if (height(l->right) > height(l->left))
tree = leftRightRotation(tree);
else
tree = leftLeftRotation(tree);
}
}
else // tree是对应要删除的节点。
{
// tree的左右孩子都非空
if ((tree->left!=NULL) && (tree->right!=NULL))
{
if (height(tree->left) > height(tree->right))
{
// 如果tree的左子树比右子树高;
// 则(01)找出tree的左子树中的最大节点
// (02)将该最大节点的值赋值给tree。
// (03)删除该最大节点。
// 这类似于用"tree的左子树中最大节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的左子树中最大节点"之后,AVL树仍然是平衡的。
AVLTreeNode<T>* max = maximum(tree->left);
tree->key = max->key;
tree->left = remove(tree->left, max);
}
else
{
// 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
// 则(01)找出tree的右子树中的最小节点
// (02)将该最小节点的值赋值给tree。
// (03)删除该最小节点。
// 这类似于用"tree的右子树中最小节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的右子树中最小节点"之后,AVL树仍然是平衡的。
AVLTreeNode<T>* min = maximum(tree->right);
tree->key = min->key;
tree->right = remove(tree->right, min);
}
}
else
{
AVLTreeNode<T>* tmp = tree;
tree = (tree->left!=NULL) ? tree->left : tree->right;
delete tmp;
}
} return tree;
} template <class T>
void AVLTree<T>::remove(T key)
{
AVLTreeNode<T>* z; if ((z = search(mRoot, key)) != NULL)
mRoot = remove(mRoot, z);
}

  

注意:关于AVL树的"前序遍历"、"中序遍历"、"后序遍历"、"最大值"、"最小值"、"查找"、"打印"、"销毁"等接口与"二叉查找树"基本一样,这些操作在"二叉查找树"中已经介绍过了,这里就不再单独介绍了。当然,后文给出的AVL树的完整源码中,有给出这些API的实现代码。这些接口很简单,Please RTFSC(Read The Fucking Source Code)!

完整的实现代码

AVL树的实现文件(AVRTree.h)

#ifndef _AVL_TREE_HPP_
#define _AVL_TREE_HPP_ #include <iomanip>
#include <iostream>
using namespace std; template <class T>
class AVLTreeNode{
public:
T key; // 关键字(键值)
int height; // 高度
AVLTreeNode *left; // 左孩子
AVLTreeNode *right; // 右孩子 AVLTreeNode(T value, AVLTreeNode *l, AVLTreeNode *r):
key(value), height(0),left(l),right(r) {}
}; template <class T>
class AVLTree {
private:
AVLTreeNode<T> *mRoot; // 根结点 public:
AVLTree();
~AVLTree(); // 获取树的高度
int height();
// 获取树的高度
int max(int a, int b); // 前序遍历"AVL树"
void preOrder();
// 中序遍历"AVL树"
void inOrder();
// 后序遍历"AVL树"
void postOrder(); // (递归实现)查找"AVL树"中键值为key的节点
AVLTreeNode<T>* search(T key);
// (非递归实现)查找"AVL树"中键值为key的节点
AVLTreeNode<T>* iterativeSearch(T key); // 查找最小结点:返回最小结点的键值。
T minimum();
// 查找最大结点:返回最大结点的键值。
T maximum(); // 将结点(key为节点键值)插入到AVL树中
void insert(T key); // 删除结点(key为节点键值)
void remove(T key); // 销毁AVL树
void destroy(); // 打印AVL树
void print();
private:
// 获取树的高度
int height(AVLTreeNode<T>* tree) ; // 前序遍历"AVL树"
void preOrder(AVLTreeNode<T>* tree) const;
// 中序遍历"AVL树"
void inOrder(AVLTreeNode<T>* tree) const;
// 后序遍历"AVL树"
void postOrder(AVLTreeNode<T>* tree) const; // (递归实现)查找"AVL树x"中键值为key的节点
AVLTreeNode<T>* search(AVLTreeNode<T>* x, T key) const;
// (非递归实现)查找"AVL树x"中键值为key的节点
AVLTreeNode<T>* iterativeSearch(AVLTreeNode<T>* x, T key) const; // 查找最小结点:返回tree为根结点的AVL树的最小结点。
AVLTreeNode<T>* minimum(AVLTreeNode<T>* tree);
// 查找最大结点:返回tree为根结点的AVL树的最大结点。
AVLTreeNode<T>* maximum(AVLTreeNode<T>* tree); // LL:左左对应的情况(左单旋转)。
AVLTreeNode<T>* leftLeftRotation(AVLTreeNode<T>* k2); // RR:右右对应的情况(右单旋转)。
AVLTreeNode<T>* rightRightRotation(AVLTreeNode<T>* k1); // LR:左右对应的情况(左双旋转)。
AVLTreeNode<T>* leftRightRotation(AVLTreeNode<T>* k3); // RL:右左对应的情况(右双旋转)。
AVLTreeNode<T>* rightLeftRotation(AVLTreeNode<T>* k1); // 将结点(z)插入到AVL树(tree)中
AVLTreeNode<T>* insert(AVLTreeNode<T>* &tree, T key); // 删除AVL树(tree)中的结点(z),并返回被删除的结点
AVLTreeNode<T>* remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z); // 销毁AVL树
void destroy(AVLTreeNode<T>* &tree); // 打印AVL树
void print(AVLTreeNode<T>* tree, T key, int direction);
}; /*
* 构造函数
*/
template <class T>
AVLTree<T>::AVLTree():mRoot(NULL)
{
} /*
* 析构函数
*/
template <class T>
AVLTree<T>::~AVLTree()
{
destroy(mRoot);
} /*
* 获取树的高度
*/
template <class T>
int AVLTree<T>::height(AVLTreeNode<T>* tree)
{
if (tree != NULL)
return tree->height; return 0;
} template <class T>
int AVLTree<T>::height()
{
return height(mRoot);
}
/*
* 比较两个值的大小
*/
template <class T>
int AVLTree<T>::max(int a, int b)
{
return a>b ? a : b;
} /*
* 前序遍历"AVL树"
*/
template <class T>
void AVLTree<T>::preOrder(AVLTreeNode<T>* tree) const
{
if(tree != NULL)
{
cout<< tree->key << " " ;
preOrder(tree->left);
preOrder(tree->right);
}
} template <class T>
void AVLTree<T>::preOrder()
{
preOrder(mRoot);
} /*
* 中序遍历"AVL树"
*/
template <class T>
void AVLTree<T>::inOrder(AVLTreeNode<T>* tree) const
{
if(tree != NULL)
{
inOrder(tree->left);
cout<< tree->key << " " ;
inOrder(tree->right);
}
} template <class T>
void AVLTree<T>::inOrder()
{
inOrder(mRoot);
} /*
* 后序遍历"AVL树"
*/
template <class T>
void AVLTree<T>::postOrder(AVLTreeNode<T>* tree) const
{
if(tree != NULL)
{
postOrder(tree->left);
postOrder(tree->right);
cout<< tree->key << " " ;
}
} template <class T>
void AVLTree<T>::postOrder()
{
postOrder(mRoot);
} /*
* (递归实现)查找"AVL树x"中键值为key的节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::search(AVLTreeNode<T>* x, T key) const
{
if (x==NULL || x->key==key)
return x; if (key < x->key)
return search(x->left, key);
else
return search(x->right, key);
} template <class T>
AVLTreeNode<T>* AVLTree<T>::search(T key)
{
return search(mRoot, key);
} /*
* (非递归实现)查找"AVL树x"中键值为key的节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::iterativeSearch(AVLTreeNode<T>* x, T key) const
{
while ((x!=NULL) && (x->key!=key))
{
if (key < x->key)
x = x->left;
else
x = x->right;
} return x;
} template <class T>
AVLTreeNode<T>* AVLTree<T>::iterativeSearch(T key)
{
return iterativeSearch(mRoot, key);
} /*
* 查找最小结点:返回tree为根结点的AVL树的最小结点。
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::minimum(AVLTreeNode<T>* tree)
{
if (tree == NULL)
return NULL; while(tree->left != NULL)
tree = tree->left;
return tree;
} template <class T>
T AVLTree<T>::minimum()
{
AVLTreeNode<T> *p = minimum(mRoot);
if (p != NULL)
return p->key; return (T)NULL;
} /*
* 查找最大结点:返回tree为根结点的AVL树的最大结点。
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::maximum(AVLTreeNode<T>* tree)
{
if (tree == NULL)
return NULL; while(tree->right != NULL)
tree = tree->right;
return tree;
} template <class T>
T AVLTree<T>::maximum()
{
AVLTreeNode<T> *p = maximum(mRoot);
if (p != NULL)
return p->key; return (T)NULL;
} /*
* LL:左左对应的情况(左单旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::leftLeftRotation(AVLTreeNode<T>* k2)
{
AVLTreeNode<T>* k1; k1 = k2->left;
k2->left = k1->right;
k1->right = k2; k2->height = max( height(k2->left), height(k2->right)) + 1;
k1->height = max( height(k1->left), k2->height) + 1; return k1;
} /*
* RR:右右对应的情况(右单旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::rightRightRotation(AVLTreeNode<T>* k1)
{
AVLTreeNode<T>* k2; k2 = k1->right;
k1->right = k2->left;
k2->left = k1; k1->height = max( height(k1->left), height(k1->right)) + 1;
k2->height = max( height(k2->right), k1->height) + 1; return k2;
} /*
* LR:左右对应的情况(左双旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::leftRightRotation(AVLTreeNode<T>* k3)
{
k3->left = rightRightRotation(k3->left); return leftLeftRotation(k3);
} /*
* RL:右左对应的情况(右双旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::rightLeftRotation(AVLTreeNode<T>* k1)
{
k1->right = leftLeftRotation(k1->right); return rightRightRotation(k1);
} /*
* 将结点插入到AVL树中,并返回根节点
*
* 参数说明:
* tree AVL树的根结点
* key 插入的结点的键值
* 返回值:
* 根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::insert(AVLTreeNode<T>* &tree, T key)
{
if (tree == NULL)
{
// 新建节点
tree = new AVLTreeNode<T>(key, NULL, NULL);
if (tree==NULL)
{
cout << "ERROR: create avltree node failed!" << endl;
return NULL;
}
}
else if (key < tree->key) // 应该将key插入到"tree的左子树"的情况
{
tree->left = insert(tree->left, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->left) - height(tree->right) == 2)
{
if (key < tree->left->key)
tree = leftLeftRotation(tree);
else
tree = leftRightRotation(tree);
}
}
else if (key > tree->key) // 应该将key插入到"tree的右子树"的情况
{
tree->right = insert(tree->right, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->right) - height(tree->left) == 2)
{
if (key > tree->right->key)
tree = rightRightRotation(tree);
else
tree = rightLeftRotation(tree);
}
}
else //key == tree->key)
{
cout << "添加失败:不允许添加相同的节点!" << endl;
} tree->height = max( height(tree->left), height(tree->right)) + 1; return tree;
} template <class T>
void AVLTree<T>::insert(T key)
{
insert(mRoot, key);
} /*
* 删除结点(z),返回根节点
*
* 参数说明:
* tree AVL树的根结点
* z 待删除的结点
* 返回值:
* 根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z)
{
// 根为空 或者 没有要删除的节点,直接返回NULL。
if (tree==NULL || z==NULL)
return NULL; if (z->key < tree->key) // 待删除的节点在"tree的左子树"中
{
tree->left = remove(tree->left, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->right) - height(tree->left) == 2)
{
AVLTreeNode<T> *r = tree->right;
if (height(r->left) > height(r->right))
tree = rightLeftRotation(tree);
else
tree = rightRightRotation(tree);
}
}
else if (z->key > tree->key)// 待删除的节点在"tree的右子树"中
{
tree->right = remove(tree->right, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->left) - height(tree->right) == 2)
{
AVLTreeNode<T> *l = tree->left;
if (height(l->right) > height(l->left))
tree = leftRightRotation(tree);
else
tree = leftLeftRotation(tree);
}
}
else // tree是对应要删除的节点。
{
// tree的左右孩子都非空
if ((tree->left!=NULL) && (tree->right!=NULL))
{
if (height(tree->left) > height(tree->right))
{
// 如果tree的左子树比右子树高;
// 则(01)找出tree的左子树中的最大节点
// (02)将该最大节点的值赋值给tree。
// (03)删除该最大节点。
// 这类似于用"tree的左子树中最大节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的左子树中最大节点"之后,AVL树仍然是平衡的。
AVLTreeNode<T>* max = maximum(tree->left);
tree->key = max->key;
tree->left = remove(tree->left, max);
}
else
{
// 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
// 则(01)找出tree的右子树中的最小节点
// (02)将该最小节点的值赋值给tree。
// (03)删除该最小节点。
// 这类似于用"tree的右子树中最小节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的右子树中最小节点"之后,AVL树仍然是平衡的。
AVLTreeNode<T>* min = maximum(tree->right);
tree->key = min->key;
tree->right = remove(tree->right, min);
}
}
else
{
AVLTreeNode<T>* tmp = tree;
tree = (tree->left!=NULL) ? tree->left : tree->right;
delete tmp;
}
} return tree;
} template <class T>
void AVLTree<T>::remove(T key)
{
AVLTreeNode<T>* z; if ((z = search(mRoot, key)) != NULL)
mRoot = remove(mRoot, z);
} /*
* 销毁AVL树
*/
template <class T>
void AVLTree<T>::destroy(AVLTreeNode<T>* &tree)
{
if (tree==NULL)
return ; if (tree->left != NULL)
destroy(tree->left);
if (tree->right != NULL)
destroy(tree->right); delete tree;
} template <class T>
void AVLTree<T>::destroy()
{
destroy(mRoot);
} /*
* 打印"二叉查找树"
*
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
template <class T>
void AVLTree<T>::print(AVLTreeNode<T>* tree, T key, int direction)
{
if(tree != NULL)
{
if(direction==0) // tree是根节点
cout << setw(2) << tree->key << " is root" << endl;
else // tree是分支节点
cout << setw(2) << tree->key << " is " << setw(2) << key << "'s " << setw(12) << (direction==1?"right child" : "left child") << endl; print(tree->left, tree->key, -1);
print(tree->right,tree->key, 1);
}
} template <class T>
void AVLTree<T>::print()
{
if (mRoot != NULL)
print(mRoot, mRoot->key, 0);
}
#endif

  AVL树的测试程序(AVLTreeTest.cpp)

/**
* C 语言: AVL树
*
* @author skywang
* @date 2013/11/07
*/ #include <iostream>
#include "AVLTree.h"
using namespace std; static int arr[]= {3,2,1,4,5,6,7,16,15,14,13,12,11,10,8,9};
#define TBL_SIZE(a) ( (sizeof(a)) / (sizeof(a[0])) ) int main()
{
int i,ilen;
AVLTree<int>* tree=new AVLTree<int>(); cout << "== 依次添加: ";
ilen = TBL_SIZE(arr);
for(i=0; i<ilen; i++)
{
cout << arr[i] <<" ";
tree->insert(arr[i]);
} cout << "\n== 前序遍历: ";
tree->preOrder(); cout << "\n== 中序遍历: ";
tree->inOrder(); cout << "\n== 后序遍历: ";
tree->postOrder();
cout << endl; cout << "== 高度: " << tree->height() << endl;
cout << "== 最小值: " << tree->minimum() << endl;
cout << "== 最大值: " << tree->maximum() << endl;
cout << "== 树的详细信息: " << endl;
tree->print(); i = 8;
cout << "\n== 删除根节点: " << i;
tree->remove(i); cout << "\n== 高度: " << tree->height() ;
cout << "\n== 中序遍历: " ;
tree->inOrder();
cout << "\n== 树的详细信息: " << endl;
tree->print(); // 销毁二叉树
tree->destroy(); return 0;
}

  

AVL树的C++测试程序

AVL树的测试程序代码(AVLTreeTest.cpp)在前面已经给出。在测试程序中,首先新建一棵AVL树,然后依次添加"3,2,1,4,5,6,7,16,15,14,13,12,11,10,8,9" 到AVL树中;添加完毕之后,再将8从AVL树中删除。AVL树的添加和删除过程如下图:

(01) 添加3,2
添加3,2都不会破坏AVL树的平衡性。

(02) 添加1
添加1之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

(03) 添加4
添加4不会破坏AVL树的平衡性。

(04) 添加5
添加5之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

(05) 添加6
添加6之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

(06) 添加7
添加7之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

(07) 添加16
添加16不会破坏AVL树的平衡性。

(08) 添加15
添加15之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

(09) 添加14
添加14之后,AVL树失去平衡(RL),此时需要对AVL树进行旋转(RL旋转)。旋转过程如下:

(10) 添加13
添加13之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

(11) 添加12
添加12之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

(12) 添加11
添加11之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

(13) 添加10
添加10之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

(14) 添加8
添加8不会破坏AVL树的平衡性。

(15) 添加9
但是添加9之后,AVL树失去平衡(LR),此时需要对AVL树进行旋转(LR旋转)。旋转过程如下:

添加完所有数据之后,得到的AVL树如下:

接着,删除节点8.删除节点8并不会造成AVL树的不平衡,所以不需要旋转,操作示意图如下:

程序运行结果如下:

== 依次添加: 3 2 1 4 5 6 7 16 15 14 13 12 11 10 8 9
== 前序遍历: 7 4 2 1 3 6 5 13 11 9 8 10 12 15 14 16
== 中序遍历: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
== 后序遍历: 1 3 2 5 6 4 8 10 9 12 11 14 16 15 13 7
== 高度: 5
== 最小值: 1
== 最大值: 16
== 树的详细信息:
is root
is 7's left child
is 4's left child
is 2's left child
is 2's right child
is 4's right child
is 6's left child
is 7's right child
is 13's left child
is 11's left child
is 9's left child
is 9's right child
is 11's right child
is 13's right child
is 15's left child
is 15's right child == 删除根节点: 8
== 高度: 5
== 中序遍历: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16
== 树的详细信息:
is root
is 7's left child
is 4's left child
is 2's left child
is 2's right child
is 4's right child
is 6's left child
is 7's right child
is 13's left child
is 11's left child
is 9's right child
is 11's right child
is 13's right child
is 15's left child
is 15's right child

  

【转】AVL之C++实现的更多相关文章

  1. 算法与数据结构(十一) 平衡二叉树(AVL树)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

  2. AVL树原理及实现(C语言实现以及Java语言实现)

    欢迎探讨,如有错误敬请指正 如需转载,请注明出处http://www.cnblogs.com/nullzx/ 1. AVL定义 AVL树是一种改进版的搜索二叉树.对于一般的搜索二叉树而言,如果数据恰好 ...

  3. 数据结构之平衡查找树(AVL)

    AVL树的旋转操作 图解 最详细 各大教课书上讲的都是左旋与右旋,其实这样很容易理解错误,我们换一种叫法.我们称呼左旋为:逆进针旋转.我们称呼右旋为:顺进针旋转.

  4. AVL树

    AVL树 在二叉查找树(BST)中,频繁的插入操作可能会让树的性能发生退化,因此,需要加入一些平衡操作,使树的高度达到理想的O(logn),这就是AVL树出现的背景.注意,AVL树的起名来源于两个发明 ...

  5. AVL Insight 开源情报工具:一站式情报管理服务

    一.概要 AVL Insight 开源情报工具是安天移动安全推出的一款情报收集工具,它是配合AVL Insight移动威胁情报平台的Chrome浏览器扩展程序,用户可以使用该工具,对网站中的公开信息进 ...

  6. 病毒四度升级:安天AVL Team揭露一例跨期两年的电信诈骗进化史

    自2014年9月起,安天AVL移动安全团队持续检测到一类基于Android移动平台的间谍类病毒,病毒样本大多伪装成名为"最高人民检察院"的应用.经过反编译逆向分析以及长期的跟踪调查 ...

  7. 安天AVL联合小米MIUI首擒顽固病毒“不死鸟”

    不死鸟作为希腊神话中的一种怪物,拥有不断再生的能力,每当寿限将至时,它会在巢穴中自焚,并在三天后重新复活.就在近期,安天AVL移动安全团队和小米MIUI安全中心发现了病毒界的“不死鸟”,其顽固程度之深 ...

  8. AVL树的平衡算法(JAVA实现)

      1.概念: AVL树本质上还是一个二叉搜索树,不过比二叉搜索树多了一个平衡条件:每个节点的左右子树的高度差不大于1. 二叉树的应用是为了弥补链表的查询效率问题,但是极端情况下,二叉搜索树会无限接近 ...

  9. 【数据结构】平衡二叉树—AVL树

    (百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增 ...

  10. 平衡二叉树AVL删除

    平衡二叉树的插入过程:http://www.cnblogs.com/hujunzheng/p/4665451.html 对于二叉平衡树的删除采用的是二叉排序树删除的思路: 假设被删结点是*p,其双亲是 ...

随机推荐

  1. 说一说switch关键字的奥秘

    Switch语法 switch作为Java内置关键字,却在项目中真正使用的比较少.关于switch,还是有那么一些奥秘的. 要什么switch,我有if-else 确实,项目中使用switch比较少的 ...

  2. [JAVA] 日常填坑 java.lang.SecurityException: Prohibited package name: java.xxx

    java虚拟机不允许包名以java开头. https://blog.csdn.net/sinat_28690417/article/details/72328547

  3. 使用索引别名和Rollover滚动创建索引

    使用索引别名和Rollover滚动创建索引 在ElasticSearch6.3.2 集群做节点冷(warm) 热(hot) 分离中,实现了ElasticSearch集群节点的冷热分离,新创建的索引只允 ...

  4. 【linux】【windows】查看你想访问的电脑Ip 和 端口是否 通畅

    常用查看IP是否通畅: 使用ping命令 ping 117.173.218.23 既想看IP又想看端口:使用telnet命令 telnet 117.173.218.23 9000 注意格式!!!

  5. Quartz.Net 删除一个Job

    Quartz.Net 删除Job 来博客园的第一篇文章先写个简单的,希望能帮助到大家. 步入正题: Quartz.Net有三个重要的概念,分别是 Scheduler .Job .Trigger.  S ...

  6. 基于Golang的逃逸分析(Language Mechanics On Escape Analysis)

    何为逃逸分析 在编译程序优化理论中,逃逸分析是一种确定指针动态范围的方法——分析在程序的哪些地方可以访问到指针.它涉及到指针分析和形状分析. 当一个变量(或对象)在子程序中被分配时,一个指向变量的指针 ...

  7. Git远程协作和分支

    一.远程基本操作 基本的配置远程仓库有两个命令: git remote add origin git@github.com:ZXZxin/gitlearn.git : git push -u orig ...

  8. 2019 淘友天下java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.淘友天下等公司offer,岗位是Java后端开发,因为发展原因最终选择去了淘友天下,入职一年时间了,也成为了面 ...

  9. Java解析复杂JSON数据的一种方法

    1.需解析JSON数据: { "code": 0, "message": "success", "sid": " ...

  10. Loadsh 常用方法总结以及在vue中使用Loadsh

    Loadsh 常用方法总结以及在vue中使用Loadsh Lodash 是一个一致性.模块化.高性能的 JavaScript 实用工具库.处理复杂数组,对比等可以直接采用该库,也方便快捷. 官方网站 ...