【转载】 tf.train.slice_input_producer()和tf.train.batch()
原文地址:
https://www.jianshu.com/p/8ba9cfc738c2
------------------------------------------------------------------------------------------------
1. tf.train.slice_input_producer
函数,一种模型数据的排队输入方法。
tf.train.slice_input_producer(
tensor_list,
num_epochs=None,
shuffle=True,
seed=None,
capacity=32,
shared_name=None,
name=None
)
其参量为:
Args:
tensor_list: A list of Tensor objects.
Every Tensor in tensor_list must have the same size in the first dimension. # 循环Queue输入次数
num_epochs: An integer (optional).
If specified, slice_input_producer produces each slice num_epochs times before generating an OutOfRange error.
If not specified, slice_input_producer can cycle through the slices an unlimited number of times.
shuffle: Boolean. If true, the integers are randomly shuffled within each epoch.
seed: An integer (optional). Seed used if shuffle == True. # Queue的容量
capacity: An integer. Sets the queue capacity. shared_name: (optional). If set, this queue will be shared under the given name across multiple sessions.
name: A name for the operations (optional).
相关代码实例:
# 生成包含输入和目标图片地址名的list
input_files = [os.path.join(dirname, 'input', f) for f in flist]
output_files = [os.path.join(dirname, 'output', f) for f in flist] # 内部自动转换为Constant String的Tensor,并排队进入队列
input_queue, output_queue = tf.train.slice_input_producer(
[input_files, output_files], shuffle=self.shuffle,
seed=0123, num_epochs=self.num_epochs) # tf.train.slice_input_producer()每次取一对【输入-目标】对,交给ReadFile这
# 个Op
input_file = tf.read_file(input_queue)
output_file = tf.read_file(output_queue) # 生成RGB格式的图像tensor
im_input = tf.image.decode_jpeg(input_file, channels=3)
im_output = tf.image.decode_jpeg(output_file, channels=3)
2. tf.train.batch()
函数
tf.train.batch(
tensors,
batch_size,
num_threads=1,
capacity=32,
enqueue_many=False,
shapes=None,
dynamic_pad=False,
allow_smaller_final_batch=False,
shared_name=None,
name=None
)
其参量为:
Args:
tensors: The list or dictionary of tensors to enqueue.
batch_size: The new batch size pulled from the queue.
num_threads: The number of threads enqueuing tensors. The batching will be nondeterministic if num_threads > 1.
capacity: An integer. The maximum number of elements in the queue. #进行shuffle的输入是否为单个tensor
enqueue_many: Whether each tensor in tensors is a single example. shapes: (Optional) The shapes for each example. Defaults to the inferred shapes for tensors. dynamic_pad: Boolean.
Allow variable dimensions in input shapes.
The given dimensions are padded upon dequeue so that tensors within a batch have the same shapes. allow_smaller_final_batch: (Optional) Boolean.
If True, allow the final batch to be smaller if there are insufficient items left in the queue. shared_name: (Optional).
If set, this queue will be shared under the given name across multiple sessions. name: (Optional) A name for the operations.
相关代码实例
samples = tf.train.batch(
sample,
batch_size=self.batch_size,
num_threads=self.nthreads,
capacity=self.capacity)
【转载】 tf.train.slice_input_producer()和tf.train.batch()的更多相关文章
- 【转载】 tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ----------------------------------------- ...
- tensorflow数据读取机制tf.train.slice_input_producer 和 tf.train.batch 函数
tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程 ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- tf.train.slice_input_producer()
tf.train.slice_input_producer处理的是来源tensor的数据 转载自:https://blog.csdn.net/dcrmg/article/details/7977687 ...
- tensorflow|tf.train.slice_input_producer|tf.train.Coordinator|tf.train.start_queue_runners
#### ''' tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据 slice_input_prod ...
- tfsenflow队列|tf.train.slice_input_producer|tf.train.Coordinator|tf.train.start_queue_runners
#### ''' tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据 slice_input_pr ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- tensorflow 的 Batch Normalization 实现(tf.nn.moments、tf.nn.batch_normalization)
tensorflow 在实现 Batch Normalization(各个网络层输出的归一化)时,主要用到以下两个 api: tf.nn.moments(x, axes, name=None, kee ...
随机推荐
- JVM中对象是否已死
- linux一些配置
ifconfig 查询.设置网卡和ip参数 ifup ens33 启动网卡 ifdown 关闭网卡 systemctl restart/start/stop network 重启.开始.关闭 网络服务 ...
- python网络-HTTP协议(28)
一.服务器和客户端介绍 1.什么是服务器? 简而言之:提供服务的机器就是服务器,至于提供什么服务不重要,重要的是要给其他人提供服务.例如:FTP服务器可以提供文件下载,SMTP服务器等等,不同的服务器 ...
- P1983 车站分级[拓扑]
题目描述 一条单向的铁路线上,依次有编号为 1, 2, -, n1,2,-,n的 nn个火车站.每个火车站都有一个级别,最低为 11 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟 ...
- VS无ADO.NET实体数据模型?
今天做EF的小例子时,发现需要添加实体数据模型,但是不管怎么找在新建项中都找不到这个选项,这是怎么回事,于是就开始百度吧,有的说可能是VS安装时没有全选,也有的人说可能是重装VS时,没有将注册表清除, ...
- 远程连接Linux mysql报错:Access denied for user ‘root’@‘localhost’(using password: YES)的解决方法
在新安装好的Centos7上刚安装好mysql,准备进去看看,但是登陆的时候,发现报错啦: ERROR 1045 (28000): Access denied for user 'root'@'loc ...
- LINUX系统的常用知识
常用的命令: man config 查看linux里面所有命令的详细描述 man pwd 按回车是一行一行的走,按空格是一页一页的走,按q键是退出的意思 mkdir test 创建文件夹p ...
- Oracle 11g 新特性 -- 自适应游标共享(Adaptive Cursor Sharing: ACS) 说明(转载)
一.自适应游标共享(Adaptive Cursor Sharing) 说明 1.1 ACS概述绑定变量使Oracle DB 可以为多条SQL 语句共享单个游标,以减少分析SQL 语句所使用的共享内存量 ...
- nohup 后台执行
nohup 默认是当前用户执行的,当当前用户退出会导致执行进程异常. 所以正确的 nohup 是指定 /bin/bash 进行执行. nohup /bin/bash/ /opt/script/s.s ...
- Cogs 2546. 取石块儿(博弈)
取石块儿 ★ 输入文件:tstones.in 输出文件:tstones.out 简单对比 时间限制:1 s 内存限制:256 MB 问题描述 小L和小T进行取石块儿游戏,给定一个整数n表示石块儿总数, ...