Description

Farmer John's N (1 <= N <= 100,000) cows are lined up in a row and

numbered 1..N. The cows are conducting another one of their strange

protests, so each cow i is holding up a sign with an integer A_i

(-10,000 <= A_i <= 10,000).

FJ knows the mob of cows will behave if they are properly grouped

and thus would like to arrange the cows into one or more contiguous

groups so that every cow is in exactly one group and that every

group has a nonnegative sum.

Help him count the number of ways he can do this, modulo 1,000,000,009.

By way of example, if N = 4 and the cows' signs are 2, 3, -3, and

1, then the following are the only four valid ways of arranging the

cows:

(2 3 -3 1)

(2 3 -3) (1)

(2) (3 -3 1)

(2) (3 -3) (1)

Note that this example demonstrates the rule for counting different

orders of the arrangements.

给出n个数,问有几种划分方案(不能改变数的位置),使得每组中数的和大于等于0。输出方案数除以 1000000009的余数。

Input

  • Line 1: A single integer: N
  • Lines 2..N + 1: Line i + 1 contains a single integer: A_i

Output

  • Line 1: A single integer, the number of arrangements modulo

    1,000,000,009.

Sample Input

4

2

3

-3

1

Sample Output

4


本题很容易想到一个N^2 DP,即 $$ f(i)=\sum_{j=1}^{i-1} f(j),(sum[i]-sum[j]>=0)$$ 不过肯定会T就是了。我们考虑每次转移只考虑到sum[i]与sum[j]的大小关系,于是我们只要将前缀和离散化一下然后丢到树状数组里处理下就好了

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lowbit(x) ((x)&(-x))
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
const int N=1e5,mod=1e9+9;
int tree[N+10],sum[N+10],f[N+10];
int n,T,ans;
struct AC{
int x,ID;
void join(int a,int b){x=a,ID=b;}
bool operator <(const AC &a)const{return x!=a.x?x<a.x:ID<a.ID;}
}A[N+10];
void insert(int x,int v){for (;x<=n;x+=lowbit(x)) tree[x]=(tree[x]+v)%mod;}
int query(int x){
int res=0;
for (;x;x-=lowbit(x)) res=(res+tree[x])%mod;
return res;
}
int main(){
n=read();
for (int i=1;i<=n;i++) A[i].join(A[i-1].x+read(),i),f[i]=(A[i].x>=0);
sort(A+1,A+1+n);
for (int i=1;i<=n;i++) sum[A[i].ID]=i;
for (int i=1;i<=n;i++) insert(sum[i],f[i]=(f[i]+query(sum[i]))%mod);
printf("%d\n",f[n]);
return 0;
}

[Usaco2011 Feb]Generic Cow Protests的更多相关文章

  1. BZOJ2274: [Usaco2011 Feb]Generic Cow Protests

    2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 196  Solve ...

  2. 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组

    题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...

  3. BZOJ 2274 [Usaco2011 Feb]Generic Cow Protests

    [题解] 很容易可以写出朴素DP方程f[i]=sigma f[j] (sum[i]>=sum[j],1<=j<=i).  于是我们用权值树状数组优化即可. #include<c ...

  4. USACO 奶牛抗议 Generic Cow Protests

    USACO 奶牛抗议 Generic Cow Protests Description 约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动.第i头奶牛的理智度 为Ai,Ai可能是负数.约翰希望 ...

  5. 【BZOJ】【3301】【USACO2011 Feb】Cow Line

    康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:( ...

  6. 洛谷 2344 奶牛抗议 Generic Cow Protests, 2011 Feb

    [题解] 我们可以轻松想到朴素的状态转移方程,但直接这样做是n^2的.所以我们考虑采用树状数组优化.写法跟求逆序对很相似,即对前缀和离散化之后开一个权值树状数组,每次f[i]+=query(sum[i ...

  7. [USACO11FEB]Generic Cow Protests

    思路: 动态规划.首先处理出这些数的前缀和$a$,$f_i$记录从第$1$位到第$i$位的最大分组数量.DP方程为:$f_i=max(f_i,f_j+1)$,其中$j$满足$a_i-a_j≥0$. # ...

  8. BZOJ3301: [USACO2011 Feb] Cow Line

    3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 67  Solved: 39[Submit ...

  9. 3301: [USACO2011 Feb] Cow Line

    3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 82  Solved: 49[Submit ...

随机推荐

  1. Meteor ToDo App实例

    在本章中,我们将创建一个简单的待办事项应用程序. 第1步 - 创建应用程序 打开命令提示符,运行以下命令 - C:\Users\Administrator\Desktop>meteor crea ...

  2. win8系统 如何不显示这台电脑的文件夹

    在win8系统中,默认有下面这种文件夹   只要打开注册表编辑器,找到下面所示的项目,删除所有子文件夹即可(最后剩下一个DelegateFolders不用管) [HKEY_LOCAL_MACHINE\ ...

  3. mysql手记

    myisam innoDB是mysql经常使用的存储引擎 MyISAM不支持事务.也不支持外键.但其訪问速度快.对事务完整性没有要求. InnoDB存储引擎提供了具有提交.回滚和崩溃恢复能力的事务安全 ...

  4. python爬虫(二)--了解deque

    队列-deque 有了上面一节的基础.当然你须要全然掌握上一节的全部方法,由于上一节的方法.在以下的教程中 会重复的用到. 假设你没有记住,请你返回上一节. http://blog.csdn.net/ ...

  5. HBase单机环境搭建

    在搭建HBase单机环境之前,首先你要保证你已经搭建好Java环境: $ java -version java version "1.8.0_51" Java(TM) SE Run ...

  6. TinyXml 与 Rapidxml效率对照

    曾经在做开发中一直使用TinyXml,在网上搜索说Rapidxml的效率比tinyXml高.个人比較喜欢追求效率.所以忍不住尝试性使用Rapidxml. RapidXml 的官方站点例如以下: htt ...

  7. javascript闭包的应用

    我印象中,javascript的闭包属于进阶的范畴,无非是用来在面试中装装逼而已.你看我身边的一个小伙子,有一天我装逼地问他什么是javascript的闭包,他居然连听都没听说过.但他做起前端的东西来 ...

  8. Hibernate状态转换

    瞬时态: 对象有new关键字创建,此时还未与Session关联. 持久态: 在执行session.save(bean)或saveOrUpdate()操作后,bean纳入Session的管理范围,这时b ...

  9. 5.2【Linux 内核网络协议栈源码剖析】socket 函数剖析 ☆☆☆

    深度剖析网络协议栈中的 socket 函数,可以说是把前面介绍的串联起来,将网络协议栈各层关联起来. 应用层 FTP SMTP HTTP ... 传输层 TCP UDP 网络层 IP ICMP ARP ...

  10. Can't remove netstandard folder from output path (.net standard)

    https://developercommunity.visualstudio.com/content/problem/30940/cant-remove-netstandard-folder-fro ...