笔试算法题(33):烙饼排序问题 & N!阶乘十进制末尾0的个数二进制最低1的位置
出题:不同大小烙饼的排序问题:对于N块大小不一的烙饼,上下累在一起,由于一只手托着所有的饼,所以仅有一只手可以翻转饼(假设手足够大可以翻转任意块数的 饼),规定所有的大饼都出现在小饼的下面则说明已经排序,则最少需要翻转几次,才能达到大小有序的结果(改变饼的顺序只能整体翻转,不能相邻交换);
分析:
- 假设饼大小编号为1,……,N,1就是最小的饼,N就是最大的饼,最大的N饼翻转到最下面之前,一定需要达到最上面,所以首先需要寻找N饼所在的位置,翻 转到最上面,然后翻转所有的饼,这样N饼就可以就位;
- 然后针对N-1饼,直到1饼。翻转的次数最大为2*(N-1)(如果当前需要就位的饼就在最上面,则 只需一次翻转,不然每块饼就位需要翻转两次,最后一块饼不用翻转就已经就位);
- version1的策略是每次找出0到index内最大的烙饼,翻转后与index+1的烙饼相邻(最大与次大相邻);但是可能有其他的“让某两块饼相邻”的策略使得翻转次数小于2*(N-1),所以可以穷举翻转策略,然后选择最优的一个解(翻转次数最少);
解题:
/**
* 注意此处的length为target的元素个数
* */
void reverse(int* target, int length) {
int temp;
int i;
for(i=;i<length/;i++) {
temp=*(target+i);
*(target+i)=*(target+(length-i-));
*(target+(length-i-))=temp;
}
} void version1(int *array, int length) {
int index=length-, curmax;
/**
* 最后一块饼在倒数第二块饼就位时就已经就位,
* 所以循环次数为N-1,0表示最上层,index表示
* 最下层
* */
while(index>) {
/**
* 寻找0到index内最大值
* */
curmax=;
for(int i=;i<=index;i++) {
if(array[curmax]<array[i])
curmax=i;
}
/**
* 将最大值翻转到索引0处
* */
reverse(array, curmax+);
/**
* 将最大值翻转到index处
* */
reverse(array, index+); for(int i=;i<;i++)
printf("%d, ",array[i]);
printf("\n");
index--;
}
} int main() { int array[]={,,,,,};
version1(array,);
return ;
}
出题:关于阶乘的几个问题:给定一个整数N,则N!的末尾有多少个0,N!的二进制表示中最低位的1所在的位置;
分析:
- 对于N!十进制表示末尾的0的个数,其来自于5与偶数的乘积,由于偶数相对较多,所以主要取决于各个数字分解之后为包含5的个数。N!=N*(N-1)*(N-2)*……*2*1,则针对每一个乘数K,将其分解为(5^i)*M的形式计算第二个来源贡献的0的个数;
- 对于N!二进制表示的最低位的1的位置,也就是确定最低的2^i的位置,也就是求N!分解为2的质因子的个数;
解题:
int count_0_in_factorial(int n) {
int count=;
int c5,n5;
/**
* 外循环遍历n,n-1,n-2,……1
* */
while(n>) {
/**
* 计算数字如5,10,15等能够被5整除的数字中
* 包含5的个数
* */
c5=;n5=n;
while(n5%==) {
c5++;
n5/=;
}
count+=c5;
n--;
} return count;
} int count_low_1_factorial(int n) {
int index=;
while(n!=) {
n>>=;
index+=n;
}
return index;
} int main() {
int c=;
printf("%d\n",count_0_in_factorial(c));
return ;
}
笔试算法题(33):烙饼排序问题 & N!阶乘十进制末尾0的个数二进制最低1的位置的更多相关文章
- POJ 1401:Factorial 求一个数阶乘的末尾0的个数
Factorial Time Limit: 1500MS Memory Limit: 65536K Total Submissions: 15137 Accepted: 9349 Descri ...
- 计算阶乘n!末尾0的个数
一.问题描述 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数.例如: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= ...
- N的阶乘末尾0的个数和其二进制表示中最后位1的位置
问题一解法: 我们知道求N的阶乘结果末尾0的个数也就是说我们在从1做到N的乘法的时候里面产生了多少个10, 我们可以这样分解,也就是将从0到N的数分解成因式,再将这些因式相乘,那么里面有多少个 ...
- Algorithm --> 求阶乘末尾0的个数
求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相 ...
- 求N的阶乘N!中末尾0的个数
求N的阶乘N!中末尾0的个数 有道问题是这样的:给定一个正整数N,那么N的阶乘N!末尾中有多少个0呢?例如:N=10,N=3628800,则N!的末尾有两个0:直接上干货,算法思想如下:对于任意一个正 ...
- Java 计算N阶乘末尾0的个数-LeetCode 172 Factorial Trailing Zeroes
题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in ...
- 计算n的阶乘(n!)末尾0的个数
题目: 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数. 举例: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= 24 ...
- 前端如何应对笔试算法题?(用node编程)
用nodeJs写算法题 咱们前端使用算法的地方不多,但是为了校招笔试,不得不针对算法题去练习呀! 好不容易下定决心 攻克算法题.发现js并不能像c语言一样自建输入输出流.只能回去学习c语言了吗?其实不 ...
- 面试必备:高频算法题终章「图文解析 + 范例代码」之 矩阵 二进制 + 位运算 + LRU 合集
Attention 秋招接近尾声,我总结了 牛客.WanAndroid 上,有关笔试面经的帖子中出现的算法题,结合往年考题写了这一系列文章,所有文章均与 LeetCode 进行核对.测试.欢迎食用 本 ...
随机推荐
- asp.net调用oracle存储过程
oracle内的存储过程是通过游标返回结果集的 DataTable dt = new DataTable(); OracleParameter[] paras = ]; paras[] = new O ...
- Linux 常用命令十三 kill
一.kill命令 kill命令用来删除执行中的程序或工作.kill可将指定的信息送至程序.预设的信息为SIGTERM(15),可将指定程序终止.若仍无法终止该程序,可使用SIGKILL(9)信息尝试强 ...
- 使用vmware12安装Ubuntu 遇到的两个问题和解决
1.need the x86-64 cpu,but only detected the xxx cpu. 这是因为bios中的virtual function 是 disabled,改为enabled ...
- windows 命令行下 切换目录
cd D:\ 没啥用,直接D:就可以切换了,D,D:\都不行
- jQuery笔记之事件绑定
.on(),off(),.one(),.trigger() .hover() jQuery实例方法-动画 .show(),.hide(),.toggle() 参数:null或(duration,eas ...
- 记一次线上环境的内存溢出(java.lang.OutOfMemoryError)
事故背景 今天客户说风控项目有个别用户查询不到数据不是报错就是一直卡在那里,我就去那个接口看了下. 一看项目日志今天的都几个g了,平常也就几百兆吧,很明显出了问题. 请求接口后使用命令tail -f ...
- pytest特色与实用插件
pytest特色 1.fixture的特点 fixture是pytest特有的功能,其特点如下: 必须用pytest.fixture装饰器装饰:fixture有明确的名字,在其他函数(function ...
- DFS和BFS模板
DFS: 该DFS框架以2D坐标范围为例,来体现DFS算法的实现思想 #include<cstdio> #include<cstring> #include<cstdli ...
- 数据库执行计划慢导致I/O 慢
Memory Statistics~~~~~~~~~~~~~~~~~ Begin End ------------ ------------ Host Mem (MB): 16,338.5 16,33 ...
- TestNG基本注解(二)
1. Before类别和After类别注解 @BeforeSuite @AfterSuite @BeforeTest @AfterTest @BeforeClass @AfterClass @Befo ...