链接:http://poj.org/problem?id=1384

Piggy-Bank
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 8893 Accepted: 4333

Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple.
Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough
cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility
is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of
an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of
various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in
grams.

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved
using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.

题意:如今有n种硬币,每种硬币有特定的重量cost[i] 克和它相应的价值val[i]. 每种硬币能够无限使用. 已知如今一个储蓄罐中所有硬币的总重量正好为m克, 问你这个储蓄罐中最少有多少价值的硬币? 假设不可能存在m克的情况, 那么就输出” This is impossible.”.

分析:这是一题全然背包题目。 本题的限制条件: 硬币总重量正好等于m. 本题的目标条件:
硬币总价值尽量小.初始化时dp[0]==0,(由于本题要求的是最小的价值,所以其它应该所有初始化为INF,假设求最大值则初始化为-1.)。

状态转移方程:dp[j]=min(dp[j],dp[j-r[i].w]+r[i].value).

<span style="font-size:18px;">#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#define INF 0x7fffffff
using namespace std;
const int maxn=10010;
struct node{
int value;
int w;
}r[maxn];
int dp[10010];
int main()
{
int t,k;
int E,F,v;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&E,&F);
scanf("%d",&k);
for(int i=1;i<=k;i++)
{
scanf("%d %d",&r[i].value,&r[i].w);
}
v=F-E;
dp[0]=0;
for(int i=1;i<=v;i++) dp[i]=INF;
for(int i=1;i<=k;i++)
{
for(int j=r[i].w;j<=v;j++)
{
if(dp[j-r[i].w] != INF)
dp[j]=min(dp[j-r[i].w]+r[i].value,dp[j]);
}
/*for(int i=1;i<=v;i++) cout<< dp[i] << " ";
cout<<endl;*/
}
if(dp[v] != INF)
printf("The minimum amount of money in the piggy-bank is %d.\n",dp[v]);
else
printf("This is impossible.\n");
}
return 0;
}
</span>

POJ 1384 POJ 1384 Piggy-Bank(全然背包)的更多相关文章

  1. poj 1384 Piggy-Bank(全然背包)

    http://poj.org/problem?id=1384 Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...

  2. POJ 1384 Piggy-Bank (ZOJ 2014 Piggy-Bank) 完全背包

    POJ :http://poj.org/problem?id=1384 ZOJ:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode ...

  3. POJ 3181 Dollar Dayz(全然背包+简单高精度加法)

    POJ 3181 Dollar Dayz(全然背包+简单高精度加法) id=3181">http://poj.org/problem?id=3181 题意: 给你K种硬币,每种硬币各自 ...

  4. POJ 3260 The Fewest Coins(多重背包+全然背包)

    POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...

  5. poj 2063 Investment ( zoj 2224 Investment ) 完全背包

    传送门: POJ:http://poj.org/problem?id=2063 ZOJ:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...

  6. POJ 2642 The Brick Stops Here 0-1背包

    poj: http://poj.org/problem?id=2642 大意: 给出n(n<=200)块黄铜合金,还有它们的浓度和价钱.给出若干个个询问使它们在n块中取 M 块 使得这M块合金的 ...

  7. G 全然背包

    <span style="color:#3333ff;">/* /* _________________________________________________ ...

  8. HDU 1248 寒冰王座(全然背包:入门题)

    HDU 1248 寒冰王座(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1248 题意: 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票 ...

  9. HDU 4508 湫湫系列故事——减肥记I(全然背包)

    HDU 4508 湫湫系列故事--减肥记I(全然背包) http://acm.hdu.edu.cn/showproblem.php?pid=4508 题意: 有n种食物, 每种食物吃了能获得val[i ...

随机推荐

  1. matlab中数据类型

    在MATLAB中有15种基本数据类型,分别是8种整型数据.单精度浮点型.双精度浮点型.逻辑型.字符串型.单元数组.结构体类型和函数句柄.这15种基本数据类型具体如下. 有符号整数型:int8,int1 ...

  2. Java基础(十三)--深拷贝和浅拷贝

    在上篇文章:Java基础(十二)--clone()方法,我们简单介绍了clone()的使用 clone()对于基本数据类型的拷贝是完全没问题的,但是如果是引用数据类型呢? @Data @NoArgsC ...

  3. 【C语言】控制台窗口图形界面编程(八):键盘事件

    目录 00. 目录 01. INPUT_RECORD结构 02. KEY_EVENT_RECORD结构 03. ReadConsoleInput函数 04. 示例程序 00. 目录 01. INPUT ...

  4. filezilla server FTP 安装报错 "could not load TLS network. Aborting start of administration interface"

    filezilla server FTP 安装报错   "could not load TLS network. Aborting start of administration inter ...

  5. Beam Search

    Q: 什么是Beam Search? 它在NLP中的什么场景里会⽤到? 传统的广度优先策略能够找到最优的路径,但是在搜索空间非常大的情况下,内存占用是指数级增长,很容易造成内存溢出,因此提出了beam ...

  6. 全国高校绿色计算大赛 预赛第二阶段(Python)

    第1关统计分数的麻烦 class Task: def get_lost_scores(self, scores): s = "" index = [1 for i in range ...

  7. 使用TensorRT加速yolo3

    一.TensorRT支持的模型: TensorRT 直接支持的model有ONNX.Caffe.TensorFlow,其他常见model建议先转化成ONNX.总结如下: 1 ONNX(.onnx) 2 ...

  8. Nginx的初识

    今日刚接触了解到Nginx的反向代理,正向代理,并发,集群,同个站点不同域名的解析访问等等. 1.反向代理:Nginx充当一个桥接的作用,对用户和服务端进行链接,进行服务端的代理,这样有什么好处: a ...

  9. HTML5地理定位-Geolocation API

    HTML5提供了一组Geolocation API,来自navigator定位对象的子对象,获取用户的地理位置信息Geolocation API使用方法:1.判断是否支持 navigator.geol ...

  10. Angular网络请求的封装

    很多时候,我很喜欢angular的编码风格,特别是angular支持typescript之后,完整的生命周期,完美的钩子函数,都是别的语言所无法替代的.这里我来说说我自己的网络请求封装,某种意义上来说 ...