链接:http://poj.org/problem?id=1384

Piggy-Bank
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 8893 Accepted: 4333

Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple.
Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough
cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility
is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of
an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of
various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in
grams.

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved
using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.

题意:如今有n种硬币,每种硬币有特定的重量cost[i] 克和它相应的价值val[i]. 每种硬币能够无限使用. 已知如今一个储蓄罐中所有硬币的总重量正好为m克, 问你这个储蓄罐中最少有多少价值的硬币? 假设不可能存在m克的情况, 那么就输出” This is impossible.”.

分析:这是一题全然背包题目。 本题的限制条件: 硬币总重量正好等于m. 本题的目标条件:
硬币总价值尽量小.初始化时dp[0]==0,(由于本题要求的是最小的价值,所以其它应该所有初始化为INF,假设求最大值则初始化为-1.)。

状态转移方程:dp[j]=min(dp[j],dp[j-r[i].w]+r[i].value).

<span style="font-size:18px;">#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#define INF 0x7fffffff
using namespace std;
const int maxn=10010;
struct node{
int value;
int w;
}r[maxn];
int dp[10010];
int main()
{
int t,k;
int E,F,v;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&E,&F);
scanf("%d",&k);
for(int i=1;i<=k;i++)
{
scanf("%d %d",&r[i].value,&r[i].w);
}
v=F-E;
dp[0]=0;
for(int i=1;i<=v;i++) dp[i]=INF;
for(int i=1;i<=k;i++)
{
for(int j=r[i].w;j<=v;j++)
{
if(dp[j-r[i].w] != INF)
dp[j]=min(dp[j-r[i].w]+r[i].value,dp[j]);
}
/*for(int i=1;i<=v;i++) cout<< dp[i] << " ";
cout<<endl;*/
}
if(dp[v] != INF)
printf("The minimum amount of money in the piggy-bank is %d.\n",dp[v]);
else
printf("This is impossible.\n");
}
return 0;
}
</span>

POJ 1384 POJ 1384 Piggy-Bank(全然背包)的更多相关文章

  1. poj 1384 Piggy-Bank(全然背包)

    http://poj.org/problem?id=1384 Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...

  2. POJ 1384 Piggy-Bank (ZOJ 2014 Piggy-Bank) 完全背包

    POJ :http://poj.org/problem?id=1384 ZOJ:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode ...

  3. POJ 3181 Dollar Dayz(全然背包+简单高精度加法)

    POJ 3181 Dollar Dayz(全然背包+简单高精度加法) id=3181">http://poj.org/problem?id=3181 题意: 给你K种硬币,每种硬币各自 ...

  4. POJ 3260 The Fewest Coins(多重背包+全然背包)

    POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...

  5. poj 2063 Investment ( zoj 2224 Investment ) 完全背包

    传送门: POJ:http://poj.org/problem?id=2063 ZOJ:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...

  6. POJ 2642 The Brick Stops Here 0-1背包

    poj: http://poj.org/problem?id=2642 大意: 给出n(n<=200)块黄铜合金,还有它们的浓度和价钱.给出若干个个询问使它们在n块中取 M 块 使得这M块合金的 ...

  7. G 全然背包

    <span style="color:#3333ff;">/* /* _________________________________________________ ...

  8. HDU 1248 寒冰王座(全然背包:入门题)

    HDU 1248 寒冰王座(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1248 题意: 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票 ...

  9. HDU 4508 湫湫系列故事——减肥记I(全然背包)

    HDU 4508 湫湫系列故事--减肥记I(全然背包) http://acm.hdu.edu.cn/showproblem.php?pid=4508 题意: 有n种食物, 每种食物吃了能获得val[i ...

随机推荐

  1. Quartz2D知识点聚合案例

    Quartz2D知识点聚合 基本 //画图片 UIImage *image = [UIImage imageNamed:@"阿狸头像"]; [image drawInRect:re ...

  2. ASP.NET Eval四种绑定方式 及详解

    1.1.x中的数据绑定语法 <asp:Literal id="litEval2" runat="server" Text='<%#DataBinde ...

  3. 【C++】类型转换简述:四种类型转换方式的说明及应用

    本文主要简述在C++中四种类型转换的方式:static_cast.reniterpret_cast.const_cast和dynamic_cast. 在介绍C++类型转换方式之前,我们先来看看C语言的 ...

  4. 【PostgreSQL-9.6.3】一般视图

    PG视图分为两种,一种是物化视图,一种是一般视图.本篇文章主要写一般视图哪些事儿.所谓一般视图,通俗点说,就是由查询语句定义的虚拟表.视图中的数据可能来自一张或多张表. 1. 视图创建语句 CREAT ...

  5. Android(java)学习笔记203:JNI之NDK开发步骤

    1. NDK开发步骤(回忆一下HelloWorld案例): (1)创建工程 (2)定义native方法 (3)创建jni文件夹 (4)创建c源文件放到jni文件夹 (5)拷贝jni.h头文件到jni目 ...

  6. .net+EF+mvc通过EasyUI的DataGrid实现增删改查

    @{    Layout = null;} <!DOCTYPE html> <html><head>    <meta name="viewport ...

  7. linux内核中GNU C和标准C的区别

    linux内核中GNU C和标准C的区别 今天看了一下午的linux内核编程方面的内容,发现linux 内核中GNU C与标准C有一些差别,特记录如下: linux 系统上可用的C编译器是GNU C编 ...

  8. Android ListView setEmptyView

    http://my.eoe.cn/yaming/archive/879.html 1 当我们使用ListView或GridView的时候,当列表为空的时候,我们需要一个特殊的View来提示用户操作,于 ...

  9. switch、try-catch

    记录 1. 使用对象代替 switch 和 if-else 2. 根据返回数据是否能转成对象,取值 如果返回是数字字符串,直接返回,如果返回是对象,取对应的key值,再返回 其它情况,返回空 {{ o ...

  10. Spring中注解注入bean和配置文件注入bean

    注解的方式确实比手动写xml文件注入要方便快捷很多,省去了很多不必要的时间去写xml文件 按以往要注入bean的时候,需要去配置一个xml,当然也可以直接扫描包体,用xml注入bean有以下方法: & ...