AT2004 Anticube
https://www.zybuluo.com/ysner/note/1304774
题面
给定\(n\)个数\(s_i\),要求从中选出最多的数,满足任意两个数之积都不是完全立方数。
- \(n\leq10^5,s_i\leq10^{10}\)
解析
很显然的是,完全平方数的所有质因子指数都是\(3\)的倍数。
考虑质因数分解。
我们可以把每个数质因数分解,所有大于\(3\)的指数模\(3\)不影响答案。
然后维护一下该数在处理后的值\(A\),和对应的能与其凑成完全平方数的值\(B\)。
\(A\)与\(B\)不能共存。
于是我们存一下\(A\)的出现次数,最后对于每个数贪心取\(A\)和\(B\)中出现次数更多的那个即可。
注意取过的数不要再取,\(A=B\)时只能取一个。
好了问题来了,质因数分解的复杂度不太对。
有一个显而易见的结论,\(x\)中大于\(x^{\frac{1}{3}}\)的因子至多只有\(2\)个。
于是复杂度就对了?不虚,时限\(5s\)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;++i)
#define fq(i,a,b) for(re int i=a;i>=b;--i)
using namespace std;
const int N=1e5+100;
ll n,a[N],pri[N],tot,l[N],r[N],ans;
map<ll,int>num,use;
bool vis[N];
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il void Pre(re int n)
{
vis[1]=1;
fp(i,2,n)
{
if(!vis[i]) pri[++tot]=i;
for(re int j=1;j<=tot&&i*pri[j]<=n;++j)
{
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
}
}
}
il void split(re ll x,re int p)
{
re ll A=1,B=1;
fp(i,1,tot)
{
re int gu=0;
while(x%pri[i]==0)
{
x/=pri[i];++gu;
}
gu%=3;
if(gu==1) B=B*pri[i]*pri[i];
if(gu==2) A=A*pri[i]*pri[i],B=B*pri[i];
if(x<pri[i]) break;
}
if(x>1)
{
re ll t=sqrt(x);
if(t*t==x) A=A*x,B=B*t;
else A=A*x,B=B*x*x;
}
l[p]=A;r[p]=B;
++num[A];
}
int main()
{
Pre(4000);
n=gi();
fp(i,1,n) a[i]=gi(),split(a[i],i);
fp(i,1,n)
if(!use[l[i]])
{
use[l[i]]=use[r[i]]=1;
if(l[i]==r[i]) ++ans;
else ans+=max(num[l[i]],num[r[i]]);
}
printf("%lld\n",ans);
return 0;
}
AT2004 Anticube的更多相关文章
- 【agc003D】Anticube
Portal --> agc003D Description 给你\(n\)个数,要从里面选出最多的数满足这些选出来的数中任意两个数的乘积都不是立方数 Solution (为什么感觉最近这种解法 ...
- Agc003_D AntiCube
传送门 题目大意 给定$N$个数,求一个最大的子集,使得任意两两的乘积不是一个完全立方数. $n\leq 10^5 A_i\leq 10^{10}$ 题解 考虑两两乘积为$x^3$,由于$x^3\le ...
- AtCoder Grand Contest 003 D - Anticube
题目传送门:https://agc003.contest.atcoder.jp/tasks/agc003_d 题目大意: 给定\(n\)个数\(s_i\),要求从中选出尽可能多的数,满足任意两个数之积 ...
- AtCoderAGC003D Anticube
Description: 给定一个序列\(a\),要求选出最多的序列元素并保证两两元素的乘积不为立方数 Solution: 我们考虑哪些因子是有用的,如果一个因子的指数\(>3\),我们可以将他 ...
- Solution -「AGC 003D」「AT 2004」Anticube
\(\mathcal{Description}\) Link. 给定 \(n\) 个数 \(a_i\),要求从中选出最多的数,满足任意两个数之积都不是完全立方数. \(n\le10^5\) ...
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- AtCoder Grand Contest 003
AtCoder Grand Contest 003 A - Wanna go back home 翻译 告诉你一个人每天向哪个方向走,你可以自定义他每天走的距离,问它能否在最后一天结束之后回到起点. ...
- RE:从零开始的AGC被虐(到)生活(不能自理)
RE:从零开始的AGC被虐(到)生活(不能自理) 「一直注视着你,似近似远,总是触碰不到.」 --来自风平浪静的明天 AtCoder Grand Contest 001 B: Mysterious L ...
- AtCoder Grand Contest
一句话题解 QwQ主要是因为这篇文章写的有点长……有时候要找某一个题可能不是很好找,所以写了这个东西. 具体的题意.题解和代码可以再往下翻._(:з」∠)_ AGC 001 C:枚举中点/中边. D: ...
随机推荐
- span-wise drag/lift forces of cylinder
span-wise drag/lift forces of cylinder SR Description: Dear Sir/Madam, I am trying to simulate a 3 ...
- Ubuntu中Hadoop环境搭建
Ubuntu中Hadoop环境搭建 JDK安装 方法一:通过命令行直接安装(不建议) 有两种java可以安装oracle-java8-installer以及openjdk (1)安装oracle-ja ...
- 九度oj 题目1075:斐波那契数列
题目1075:斐波那契数列 时间限制:5 秒 内存限制:32 兆 特殊判题:否 提交:3641 解决:2100 题目描述: 编写一个求斐波那契数列的递归函数,输入n值,使用该递归函数,输出如样例输出的 ...
- windows 下 iptables
windows自带的防火墙就可以. 在命令行方式下输入netsh回车,再输入firewall回车,之后想干什么就干什么. 头一次见对图形化防火墙头晕的...
- 破损的键盘(codevs 4650)
题目描述 Description 有一天,你需要打一份文件,但是你的键盘坏了,上面的"home"键和"end"键会时不时地按下,而你却毫不知情,甚至你都懒得打开 ...
- 【NOIP2017练习】怎样打好隔膜(贪心,堆,带删除priority_queue)
题意:OI大师抖儿在夺得银牌之后,顺利保送pku.这一天,抖儿问长者:“我的手速虽然已经站在了人类的巅峰,但是打隔膜还是输.我换了很多队友,但是没有用.请问应该怎样打好隔膜?”长者回答:“你啊,Too ...
- Bootstrap官网文档查询
Ctrl+F 在出现的小搜索框里面输入要查找的东西.回车即可!
- Layui图标
layui 图标 layui 的所有图标全部采用字体形式,取材于阿里巴巴矢量图标库(iconfont).因此你可以把一个 icon 看作是一个普通的文字,这意味着你直接用 css 控制文字属性,如 c ...
- 【转】关于easyui tab 加载 js ajax 不走后台的问题, 怕找不到 以防万一
一直以来群里里面很多人反应,在用tab加载界面的时候,界面里面的js不会执行.今天在此说明一下原因. 不管是window,dailog还是tab其实质最终都是继承了panel.panel有两种方式展示 ...
- Linux 网络配置,ifconfig不显示ip地址的解决办法
进入到/etc/sysconfig/network-scripts 然后设置虚拟机的网络配置 这样就配置成功了