AT2004 Anticube
https://www.zybuluo.com/ysner/note/1304774
题面
给定\(n\)个数\(s_i\),要求从中选出最多的数,满足任意两个数之积都不是完全立方数。
- \(n\leq10^5,s_i\leq10^{10}\)
解析
很显然的是,完全平方数的所有质因子指数都是\(3\)的倍数。
考虑质因数分解。
我们可以把每个数质因数分解,所有大于\(3\)的指数模\(3\)不影响答案。
然后维护一下该数在处理后的值\(A\),和对应的能与其凑成完全平方数的值\(B\)。
\(A\)与\(B\)不能共存。
于是我们存一下\(A\)的出现次数,最后对于每个数贪心取\(A\)和\(B\)中出现次数更多的那个即可。
注意取过的数不要再取,\(A=B\)时只能取一个。
好了问题来了,质因数分解的复杂度不太对。
有一个显而易见的结论,\(x\)中大于\(x^{\frac{1}{3}}\)的因子至多只有\(2\)个。
于是复杂度就对了?不虚,时限\(5s\)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;++i)
#define fq(i,a,b) for(re int i=a;i>=b;--i)
using namespace std;
const int N=1e5+100;
ll n,a[N],pri[N],tot,l[N],r[N],ans;
map<ll,int>num,use;
bool vis[N];
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il void Pre(re int n)
{
vis[1]=1;
fp(i,2,n)
{
if(!vis[i]) pri[++tot]=i;
for(re int j=1;j<=tot&&i*pri[j]<=n;++j)
{
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
}
}
}
il void split(re ll x,re int p)
{
re ll A=1,B=1;
fp(i,1,tot)
{
re int gu=0;
while(x%pri[i]==0)
{
x/=pri[i];++gu;
}
gu%=3;
if(gu==1) B=B*pri[i]*pri[i];
if(gu==2) A=A*pri[i]*pri[i],B=B*pri[i];
if(x<pri[i]) break;
}
if(x>1)
{
re ll t=sqrt(x);
if(t*t==x) A=A*x,B=B*t;
else A=A*x,B=B*x*x;
}
l[p]=A;r[p]=B;
++num[A];
}
int main()
{
Pre(4000);
n=gi();
fp(i,1,n) a[i]=gi(),split(a[i],i);
fp(i,1,n)
if(!use[l[i]])
{
use[l[i]]=use[r[i]]=1;
if(l[i]==r[i]) ++ans;
else ans+=max(num[l[i]],num[r[i]]);
}
printf("%lld\n",ans);
return 0;
}
AT2004 Anticube的更多相关文章
- 【agc003D】Anticube
Portal --> agc003D Description 给你\(n\)个数,要从里面选出最多的数满足这些选出来的数中任意两个数的乘积都不是立方数 Solution (为什么感觉最近这种解法 ...
- Agc003_D AntiCube
传送门 题目大意 给定$N$个数,求一个最大的子集,使得任意两两的乘积不是一个完全立方数. $n\leq 10^5 A_i\leq 10^{10}$ 题解 考虑两两乘积为$x^3$,由于$x^3\le ...
- AtCoder Grand Contest 003 D - Anticube
题目传送门:https://agc003.contest.atcoder.jp/tasks/agc003_d 题目大意: 给定\(n\)个数\(s_i\),要求从中选出尽可能多的数,满足任意两个数之积 ...
- AtCoderAGC003D Anticube
Description: 给定一个序列\(a\),要求选出最多的序列元素并保证两两元素的乘积不为立方数 Solution: 我们考虑哪些因子是有用的,如果一个因子的指数\(>3\),我们可以将他 ...
- Solution -「AGC 003D」「AT 2004」Anticube
\(\mathcal{Description}\) Link. 给定 \(n\) 个数 \(a_i\),要求从中选出最多的数,满足任意两个数之积都不是完全立方数. \(n\le10^5\) ...
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- AtCoder Grand Contest 003
AtCoder Grand Contest 003 A - Wanna go back home 翻译 告诉你一个人每天向哪个方向走,你可以自定义他每天走的距离,问它能否在最后一天结束之后回到起点. ...
- RE:从零开始的AGC被虐(到)生活(不能自理)
RE:从零开始的AGC被虐(到)生活(不能自理) 「一直注视着你,似近似远,总是触碰不到.」 --来自风平浪静的明天 AtCoder Grand Contest 001 B: Mysterious L ...
- AtCoder Grand Contest
一句话题解 QwQ主要是因为这篇文章写的有点长……有时候要找某一个题可能不是很好找,所以写了这个东西. 具体的题意.题解和代码可以再往下翻._(:з」∠)_ AGC 001 C:枚举中点/中边. D: ...
随机推荐
- 配置Mysql审计
mysql-audit.json:Mysql审计日志 插件下载地址: https://bintray.com/mcafee/mysql-audit-plugin/release/1.1.4-725#f ...
- MySQL-----查
数据库在我眼中就是增删改查,而查,我觉得是数据库最费劲的,数据库的花式查,各种查.下面咱们不废话,就是干. 查: **查数据库版本** select version(); **查登录用户** sele ...
- Vue如何使用vue-area-linkage实现地址三级联动效果
很多时候我们需要使用地址三级联动,即省市区三级联动.网上有很多插件,在此介绍Vue的一款地区联动插件:vue-area-linkage,下面介绍如何使用这个插件实现地址联动效果: 1. ...
- sqlite3 新建数据库的过程
有些东西,很简单,不过有坑,就变复杂了.我先说最简单的方法,新建一个空的txt文档,然后把后缀改为db就可以了.-_-蛋疼,其实一开始我是不知道的,也是后来成功新建db后发现db为0kb才大胆地做了这 ...
- [POJ2774][codevs3160]Long Long Message
[POJ2774][codevs3160]Long Long Message 试题描述 The little cat is majoring in physics in the capital of ...
- poj1984并查集的相对偏移
#include<stdio.h>//典型题 #include<math.h> #define N 40010 struct node { int x,y,z; }pre[N] ...
- Gym 100801 J. Journey to the “The World’s Start” DP+单调队列优化+二分
http://codeforces.com/gym/100801 题目大意:有从左到右有n个车站,有n-1种车票,第i种车票一次最多可以坐 i 站(1<=i<=n) 每种票有固定的价钱 ...
- ETL全量多表同步简述
ETL全量多表同步简述 1. 实现需求 当原数据库的表有新增.更新.删除操作时,将改动数据同步到目标库对应的数据表. 2. 设计思路 设计总体流程图如下: 1.获取同步表名如下图: 2.循环迁移数据如 ...
- 如何查看sqlalchemy执行的原始sql语句?
SQLAlchemy打开SQL语句方法如下,echo=true将开启该功能: engine = create_engine("<db_rul>", echo=True) ...
- 多线程TcpServer
多线程TcpServer自己的EventLoop只用来接收新连接(即TcpServer所属线程的EventLoop只监听listen fd),而新连接会用其他EventLoop来执行IO(即每个新Tc ...