题目:https://loj.ac/problem/6089

对于 i <= √n ,设 f[i][j] 表示前 i 种,体积为 j 的方案数,那么 f[i][j] = ∑(1 <= k <= i ) f[i-1][j - k*i]

可以用前缀和优化,因为第 i 次只会用到间隔为 i 的和;

对于 i > √n ,最多选 √n 个,所以设 g[i][j] 表示用 i 个,体积为 j 的方案数;

每种方案如果排一个序,就是一个最小值为 √n + 1 的不降序列,所以算出不降序列的个数也就知道了方案数;

要得到一个长度为 i 的这样的序列,可以通过两种操作从 i - 1 的序列得到,即新加一个 √n + 1,或整体 + 1;

二者合并起来就是答案;

调了一下午,就是因为 f[] 数组开成 √n 大小了?为什么没有段错误提示??

会写前缀和优化DP啦...

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
int const maxn=1e5+,maxm=,mod=;
int n,f[maxn],g[maxm][maxn],s[maxn],t[maxn],ans;
int main()
{
scanf("%d",&n); int sq=sqrt(n);
f[]=;
for(int i=;i<=sq;i++)
{
for(int j=;j<=n;j++)s[j]=(f[j]+(j>=i?s[j-i]:))%mod;
for(int j=;j<=n;j++)
{
f[j]=s[j];
if(j>=(i+)*i)f[j]=(f[j]-s[j-(i+)*i]+mod)%mod;
}
}
g[][]=;
ans=f[n];//
for(int i=;i<=sq;i++)
for(int j=i*(sq+);j<=n;j++)//i*
{
g[i][j]=(g[i-][j-sq-]+g[i][j-i])%mod;
ans=(ans+(ll)g[i][j]*f[n-j]%mod)%mod;
}
printf("%d\n",ans);
return ;
}

LOJ 6089 小Y的背包计数问题 —— 前缀和优化DP的更多相关文章

  1. LOJ #6089. 小 Y 的背包计数问题

    LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...

  2. LOJ#6089 小 Y 的背包计数问题 - DP精题

    题面 题解 (本篇文章深度剖析,若想尽快做出题的看官可以参考知名博主某C202044zxy的这篇题解:https://blog.csdn.net/C202044zxy/article/details/ ...

  3. loj 6089 小 Y 的背包计数问题——分类进行的背包

    题目:https://loj.ac/problem/6089 直接多重背包,加上分剩余类的前缀和还是n^2的. 但可发现当体积>sqrt(n)时,个数的限制形同虚设,且最多有sqrt(n)个物品 ...

  4. 【LOJ6089】小Y的背包计数问题(动态规划)

    [LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...

  5. [loj6089]小Y的背包计数问题

    https://www.zybuluo.com/ysner/note/1285358 题面 小\(Y\)有一个大小为\(n\)的背包,并且小\(Y\)有\(n\)种物品. 对于第\(i\)种物品,共有 ...

  6. LOJ6089 小Y的背包计数问题 背包

    正解:背包 解题报告: 先放传送门! 好烦昂感觉真的欠下一堆,,,高级数据结构知识点什么的都不会,基础又麻油打扎实NOIp前的题单什么的都还麻油刷完,,,就很难过,,,哭辣QAQ 不说辣看这题QwQ! ...

  7. loj6089 小 Y 的背包计数问题

    link 吐槽: 好吧开学了果然忙得要死……不过为了证明我的blog还没有凉,还是跑来更一波水题 题意: 有n种物品,第i种体积为i,问装满一个大小为n的背包有多少种方案? $n\leq 10^5.$ ...

  8. LOJ6089 小Y的背包计数问题(根号优化背包)

    Solutioon 这道题利用根号分治可以把复杂度降到n根号n级别. 我们发现当物品体积大与根号n时,就是一个完全背包,换句话说就是没有了个数限制. 进一步我们发现,这个背包最多只能放根号n个物品. ...

  9. LOJ6089 小Y的背包计数问题 背包、根号分治

    题目传送门 题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模.$N \leq 10^5$ $23333 ...

随机推荐

  1. RNN与情感分类问题实战-加载IMDB数据集

    目录 Sentiment Analysis Two approaches Single layer Multi-layers Sentiment Analysis Two approaches Sim ...

  2. 第十六节:Scrapy爬虫框架之项目创建spider文件数据爬取

    Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中.其最初是为了页面抓取所设计的, 也可以应用在获取API所返回的数据或 ...

  3. loadrunner 添加负载机

    1.打开Controller 2. 添加负载 3. 配置参数 4.完成

  4. Linux虚拟机安装学习笔记

    一.Linux系统的安装1.VMwaer虚拟机的安装使用 官方下载软件地址:www.vmwaer.com 安装的虚拟机可以与现实的计算机进行通信 安装虚拟主机可以随意定制硬件安装配置建议: CPU:1 ...

  5. 华中农业大学第四届程序设计大赛网络同步赛-1020: Arithmetic Sequence,题挺好的,考思路;

    1020: Arithmetic Sequence Time Limit: 1 Sec  Memory Limit: 128 MB Submit:  ->打开链接<- Descriptio ...

  6. [TyvjP1313] [NOIP2010初赛]烽火传递(单调队列 + DP)

    传送门 就是个单调队列+DP嘛. ——代码 #include <cstdio> ; , t = , ans = ~( << ); int q[MAXN], a[MAXN], f ...

  7. 洛谷P2888 [USACO07NOV]牛栏Cow Hurdles

    题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gan ...

  8. 动态链接 - dll和so文件区别与构成

    动态链接,在可执行文件装载时或运行时,由操作系统的装载程序加载库.大多数操作系统将解析外部引用(比如库)作为加载过程的一部分.在这些系统上,可执行文件包含一个叫做import   directory的 ...

  9. Layui动画、按钮、表单

    Layui动画.按钮.表单 在实用价值的前提之下,我们并没有内置过多花俏的动画.而他们同样在 layui 的许多交互元素中,发挥着重要的作用.layui 的动画全部采用 CSS3,因此不支持ie8和部 ...

  10. lines-HDU5124(区间处理 +离散化)

    Problem Description John has several lines. The lines are covered on the X axis. Let A is a point wh ...