Huge Mod

Input: standard input

Output: standard output

Time Limit: 1 second

The operator for exponentiation is different from the addition, subtraction, multiplication or division operators in the sense that the default associativity for exponentiation goes right to left instead of left to right. So unless we mess it up by placing parenthesis,  should mean  not . This leads to the obvious fact that if we take the levels of exponents higher (i.e., 2^3^4^5^3), the numbers can become quite big. But let's not make life miserable. We being the good guys would force the ultimate value to be no more than 10000.

Given a1, a2, a3, ... , aN and m(=10000) you only need to compute a1^a2^a3^...^aN mod m.

Input

There can be multiple (not more than 100) test cases. Each test case will be presented in a single line. The first line of each test case would contain the value for M(2<=M<=10000). The next number of that line would be N(1<=N<=10). Then N numbers - the values for a1, a2, a3, ... , aNwould follow. You can safely assume that 1<=ai<=1000. The end of input is marked by a line containing a single hash ('#') mark.

Output

For each of the test cases, print the test case number followed by the value of a1^a2^a3^...^aNmod m on one line. The sample output shows the exact format for printing the test case number.

Sample Input

Sample Output

10 4 2 3 4 5
100 2 5 2
53 3 2 3 2
#
Case #1: 2
Case #2: 25
Case #3: 35

题目大意:求一个数((((a^b)^c)^d)^e)..... Mod m的值

幂太huge了,上界是1000^1000^1000^1000^1000^1000^1000^1000^1000,暴力快速幂模肯定行不通,因为幂是多少都难的计算。有公式a^x=a^(x%phi(c)+phi(c)) (mod c),所以可以用递归方法求解。

AC代码:

#include <iostream>
#include <cstdio>
#include <string>
using namespace std;
int phi[];
int f[],n;
string m; void init()
{
int i;
for(i=;i<=;i++) phi[i]=;
phi[]=;
for(i=;i<=;i++)
if(!phi[i])
for(int j=i;j<=;j+=i)
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
} int montgomery(int a,int b,int c)
{
int t=;
while(b)
{
if(b%)
t=t*a%c;
b/=;
a=a*a%c;
}
return t;
} int dfs(int now,int mod)
{
if(now==n-)
{
return f[now]%mod;
}
int t=dfs(now+,phi[mod]);
int ans=montgomery(f[now],t+phi[mod],mod);
return ans;
}
int main()
{
init();
int i,ret,kase=;
while(cin>>m,m!="#")
{
ret=;
for(i=;i<m.size();i++)
ret=ret*+m[i]-'';
cin>>n;
for(int i=;i<n;i++)
scanf("%d",f+i);
cout<<"Case #"<<kase++<<": ";
printf("%d\n",dfs(,ret));
}
return ;
}

uva 10692 高次幂取模的更多相关文章

  1. HDU1452Happy 2004(高次幂取模+积性函数+逆元)

    题目意思:2004^x的所有正因数的和(S)对29求余:输出结果: 原题链接 题目解析:解析参照来源:点击打开链接 因子和 6的因子是1,2,3,6; 6的因子和是s(6)=1+2+3+6=12; 2 ...

  2. UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!

    题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...

  3. uva 10710 快速幂取模

    //题目大意:输入一个n值问洗牌n-1次后是不是会变成初始状态(Jimmy-number),从案例可看出牌1的位置变化为2^i%n,所以最终判断2^(n-1)=1(mod n)是否成立#include ...

  4. UVa 11582 Colossal Fibonacci Numbers! 【大数幂取模】

    题目链接:Uva 11582 [vjudge] watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fil ...

  5. UVa 11582 巨大的斐波那契数!(幂取模)

    https://vjudge.net/problem/UVA-11582 题意: 输入两个非负整数a.b和正整数n,你的任务是计算f(a^b)除以n的余数.f[0]=0,f[1]=1,f[i+2]=f ...

  6. UVA 11609 - Teams 组合、快速幂取模

    看题传送门 题目大意: 有n个人,选一个或者多个人参加比赛,其中一名当队长,如果参赛者相同,队长不同,也算一种方案.求一共有多少种方案. 思路: 排列组合问题. 先选队长有C(n , 1)种 然后从n ...

  7. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  8. 【转】C语言快速幂取模算法小结

    (转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...

  9. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

随机推荐

  1. JS实现跑马灯效果(向左,向上)

    <html> <head> <title>JS实现跑马灯效果</title> <style> * { font-size:12px; fon ...

  2. 计算机图形学(Conputer Graphics):非均匀有理B样条

    计算机图形学(Conputer Graphics):非均匀有理B样条 非均匀有理B样条(Non-Uniform Rational B-Spline)英文缩写,NURBS. 它是贝塞尔曲线的一个推广,而 ...

  3. redux是全局状态(数据)的管理机制,局部数据没有意义

    redux是全局状态(数据)的管理机制,局部数据没有意义

  4. Noip2011提高组 聪明的质监员

    题目传送门 讲真,既然质监员这么聪明,为什么要让我们帮他设计程序? 所以还是叫ZZ的质检员吧 其实,我最想说的,不是这个题,而是这个\(\Sigma\)(一见 \(\Sigma\) 就懵逼系列) 这个 ...

  5. 理解GloVe模型(Global vectors for word representation)

    理解GloVe模型 概述 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息.输入:语料库输出:词向量方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学 ...

  6. lru缓存测试类

    package demo.mytest; import java.io.Serializable;import java.util.LinkedHashMap;import java.util.con ...

  7. Linux安全调优1:CentOS防火墙的设置与优化

    CentOS防火墙的设置与优化 时间:2014-09-11 02:11来源:blog.csdn.net 作者:成长的小虫 的BLOG 举报 点击:4908次 一.设置主机防火墙. 开放: 服务器的:w ...

  8. webpack执行命令的不同方式

    如使用webpack3及之前的版本只需安装webpack3即可,因为之前的webpack里面集成了webpack-cli 1. 使用局部安装webpack和webpack-cli,使用package. ...

  9. Bzoj 1083: [SCOI2005]繁忙的都市 (最小生成树)

    Bzoj 1083: [SCOI2005]繁忙的都市 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1083 此题是最小瓶颈生成树的裸题. ...

  10. MariaDB数据库(五)

    1. MariaDB主从架构 1.1 概述 主从架构用来预防数据丢失.主从多用于网站架构,因为主从的同步机制是异步的,数据的同步有一定延迟,也就是说有可能会造成数据的丢失,但是性能比较好,因此网站大多 ...