题目描述

监狱有连续编号为 1…N 的 N 个房间,每个房间关押一个犯人,有 M 种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱。

输入输出格式

输入格式:

输入两个整数 \(M,N\)

输出格式:

可能越狱的状态数,模 100003取余

输入输出样例

输入样例#1:

2 3

输出样例#1:

6

说明

6种状态为(000)(001)(011)(100)(110)(111)

1≤M≤108

1≤N≤1012

Solution

  这道题运用了正难反易的思想.  

  直接处理出合法的情况即可.

  然后想一想: 第一个有 n 种情况,然后的话 第二个就有 n-1 种情况.

  再依次类推,会发现,后面都是 n-1 种情况.

  所以 ans 即为:  $$mn-n*(n-1){m-1}.$$

  套一个快速幂模板即可. 需要注意的是 ans 为负数的情况.

代码

  1. #include<iostream> #include<cstdio>
  2. using namespace std;
  3. long long n,m,p;
  4. long long quick_pow(long long s,long long ks)
  5. { if(ks==1)return s%p; long long k=s; ks--; while(ks>0)
  6. { if(ks%2==1)k=(k*s)%p;
  7. ks/=2;
  8. s=(s*s)%p;
  9. } return k%p;
  10. }
  11. int main()
  12. {
  13. cin>>n>>m;
  14. p=100003;
  15. cout<<(quick_pow(n,m)%p-n*quick_pow(n-1,m-1)%p+p)%p;
  16. //需要处理负数的时候,加上一个 p再 模一个 p 即可
  17. return 0;
  18. }

[HNOI2008]越狱 (组合数学)的更多相关文章

  1. BZOJ 1008: [HNOI2008]越狱 组合数学

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1008 题解: 就很傻逼的组合数学啊... $$ans=M^N-M*(M-1)^{(N-1) ...

  2. P3197 [HNOI2008]越狱[组合数学]

    题目来源:洛谷 题目描述 监狱有连续编号为 1…N 的 N 个房间,每个房间关押一个犯人,有 M 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生 ...

  3. [BZOJ1008][HNOI2008]越狱 组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=1008 正着直接算有点难,我们考虑反着来,用全集减补集. 总的方案数为$m^n$.第一个人有$m$种可 ...

  4. 洛谷 P3197 [HNOI2008]越狱 题解

    P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为 \(1-N\) 的 \(N\) 个房间,每个房间关押一个犯人,有 \(M\) 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗 ...

  5. bzoj1008 [HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5099  Solved: 2207 Description 监狱有 ...

  6. 【bzoj1008】[HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7692  Solved: 3296[Submit][Status] ...

  7. BZOJ 1008: [HNOI2008]越狱 快速幂

    1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...

  8. BZOJ 1008 [HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5166  Solved: 2242[Submit][Status] ...

  9. BZOJ1008: [HNOI2008]越狱-快速幂+取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

随机推荐

  1. Windows64+Python27下配置matplotlib

    注:转载请注明原作者并附上原文链接! 网上看了很多方法,均遇到这样或者那样的问题导致安装失败,最后自己摸索一条方法,最终安装成功了. 1,首先安装numpy,这个可以选择install安装包,很简单, ...

  2. Error:(3, 32) java: 程序包org.springframework.boot不存在

     解决方案一: 找同事传一份D:\maven_repository\org\springframework\boot  ,如图所示的位置,添加进去立刻就不报红.我也可以给你发....  解决方案二: ...

  3. DAG上的动态规划---嵌套矩形(模板题)

    一.DAG的介绍 Directed Acyclic Graph,简称DAG,即有向无环图,有向说明有方向,无环表示不能直接或间接的指向自己. 摘录:有向无环图的动态规划是学习动态规划的基础,很多问题都 ...

  4. 利用python进行数据分析1_numpy的基本操作,建模基础

    import numpy as np # 生成指定维度的随机多维数据 data=np.random.rand(2,3) print(data) print(type(data)) 结果: [[0.11 ...

  5. tp5 -- 微信公众号支付

    近来期间比较忙, 忙完之后发现最近有挺多的东西没有整理,于是乎.就将以前用到的一些小东西整理了一下. 如果对您有帮助,则是我最大的幸运. 本篇主要是说了一下整合TP5的微信公众号支付. 不过由于最近T ...

  6. 【求助】NdisSend,自定义数据包发送失败?

    做ndis hook的时候,自定义了一个数据包,包结构应该没有问题,填充NDIS_PACKET结构是这样的,先初始化:        NdisAllocatePacketPool(&nStat ...

  7. 【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作

    好像还有个名字叫做“极大化”? Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的 ...

  8. Linux进程通信之共享内存实现生产者/消费者模式

    共享内存 共享内存是内核为进程创建的一个特殊内存段,它将出现在进程自己的地址空间中,其它进程可以将同一段共享内存连接(attach)到自己的地址空间.这是最快的进程间通信方式,但是不提供任何同步功能( ...

  9. UNIX环境C语言进程通信

    一.信号管理 1.函数signal signal函数是UNIX系统信号机制最简单的接口 #include <signal.h> typedef void (*sighandler_t)(i ...

  10. 格式化输出,基本运算符,流程控制主if

    5.5自我总结 一.格式化输出 1.占位符 a = 1 b = 2 print('%S %s'%(a,b)) #1 2 print('%s %s'%(1,2)) #1 2 2.format格式化 a ...