apache kafka参考
apache kafka参考
消息队列分类:
点对点:
消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息。这里要注意:
消息被消费以后,queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息。
Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
发布/订阅
消息生产者(发布)将消息发布到topic中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到topic的消息会被所有订阅者消费。
kafka消息队列调研
背景介绍
kafka是最初由Linkedin公司开发,使用Scala语言编写,Kafka是一个分布式、分区的、多副本的、多订阅者的日志系统(分布式MQ系统),可以用于web/nginx日志,搜索日志,监控日志,访问日志等等。
kafka目前支持多种客户端语言:java,python,c++,php等等。
总体结构:
kafka名词解释和工作方式:
Producer :消息生产者,就是向kafka broker发消息的客户端。
Consumer :消息消费者,向kafka broker取消息的客户端
Topic :咋们可以理解为一个队列。
Consumer Group (CG):这是kafka用来实现一个topic消息的广播(发给所有的consumer)和单播(发给任意一个consumer)的手段。一个topic可以有多个CG。topic的消息会复制(不是真的复制,是概念上的)到所有的CG,但每个CG只会把消息发给该CG中的一个consumer。如果需要实现广播,只要每个consumer有一个独立的CG就可以了。要实现单播只要所有的consumer在同一个CG。用CG还可以将consumer进行自由的分组而不需要多次发送消息到不同的topic。
Broker :一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。
Partition:为了实现扩展性,一个非常大的topic可以分布到多个broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列。partition中的每条消息都会被分配一个有序的id(offset)。kafka只保证按一个partition中的顺序将消息发给consumer,不保证一个topic的整体(多个partition间)的顺序。
Offset:kafka的存储文件都是按照offset.kafka来命名,用offset做名字的好处是方便查找。例如你想找位于2049的位置,只要找到2048.kafka的文件即可。当然the first offset就是00000000000.kafka
kafka特性:
通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
高吞吐量:即使是非常普通的硬件kafka也可以支持每秒数十万的消息。
支持同步和异步复制两种HA
Consumer客户端pull,随机读,利用sendfile系统调用,zero-copy ,批量拉数据
消费状态保存在客户端
消息存储顺序写
数据迁移、扩容对用户透明
支持Hadoop并行数据加载。
支持online和offline的场景。
持久化:通过将数据持久化到硬盘以及replication防止数据丢失。
scale out:无需停机即可扩展机器。
定期删除机制,支持设定partitions的segment file保留时间。
可靠性(一致性)
kafka(MQ)要实现从producer到consumer之间的可靠的消息传送和分发。传统的MQ系统通常都是通过broker和consumer间的确认(ack)机制实现的,并在broker保存消息分发的状态。
即使这样一致性也是很难保证的(参考原文)。kafka的做法是由consumer自己保存状态,也不要任何确认。这样虽然consumer负担更重,但其实更灵活了。
因为不管consumer上任何原因导致需要重新处理消息,都可以再次从broker获得。
kafak系统扩展性
kafka使用zookeeper来实现动态的集群扩展,不需要更改客户端(producer和consumer)的配置。broker会在zookeeper注册并保持相关的元数据(topic,partition信息等)更新。
而客户端会在zookeeper上注册相关的watcher。一旦zookeeper发生变化,客户端能及时感知并作出相应调整。这样就保证了添加或去除broker时,各broker间仍能自动实现负载均衡。
kafka设计目标
高吞吐量是其核心设计之一。
数据磁盘持久化:消息不在内存中cache,直接写入到磁盘,充分利用磁盘的顺序读写性能。
zero-copy:减少IO操作步骤。
支持数据批量发送和拉取。
支持数据压缩。
Topic划分为多个partition,提高并行处理能力。
Producer负载均衡和HA机制
producer根据用户指定的算法,将消息发送到指定的partition。
存在多个partiiton,每个partition有自己的replica,每个replica分布在不同的Broker节点上。
多个partition需要选取出lead partition,lead partition负责读写,并由zookeeper负责fail over。
通过zookeeper管理broker与consumer的动态加入与离开。
Consumer的pull机制
由于kafka broker会持久化数据,broker没有cahce压力,因此,consumer比较适合采取pull的方式消费数据,具体特别如下:
简化kafka设计,降低了难度。
Consumer根据消费能力自主控制消息拉取速度。
consumer根据自身情况自主选择消费模式,例如批量,重复消费,从制定partition或位置(offset)开始消费等.
Consumer与topic关系以及机制
本质上kafka只支持Topic.每个consumer属于一个consumer group;反过来说,每个group中可以有多个consumer.对于Topic中的一条特定的消息,
只会被订阅此Topic的每个group中的一个consumer消费,此消息不会发送给一个group的多个consumer;那么一个group中所有的consumer将会交错的消费整个Topic.
如果所有的consumer都具有相同的group,这种情况和JMS queue模式很像;消息将会在consumers之间负载均衡.
如果所有的consumer都具有不同的group,那这就是"发布-订阅";消息将会广播给所有的消费者.
在kafka中,一个partition中的消息只会被group中的一个consumer消费(同一时刻);每个group中consumer消息消费互相独立;我们可以认为一个group是一个"订阅"者,
一个Topic中的每个partions,只会被一个"订阅者"中的一个consumer消费,不过一个consumer可以同时消费多个partitions中的消息.
kafka只能保证一个partition中的消息被某个consumer消费时是顺序的.事实上,从Topic角度来说,当有多个partitions时,消息仍不是全局有序的.
通常情况下,一个group中会包含多个consumer,这样不仅可以提高topic中消息的并发消费能力,而且还能提高"故障容错"性,如果group中的某个consumer失效,
那么其消费的partitions将会有其他consumer自动接管.kafka的设计原理决定,对于一个topic,同一个group中不能有多于partitions个数的consumer同时消费,
否则将意味着某些consumer将无法得到消息.
Producer均衡算法
kafka集群中的任何一个broker,都可以向producer提供metadata信息,这些metadata中包含"集群中存活的servers列表"/"partitions leader列表"
等信息(请参看zookeeper中的节点信息).当producer获取到metadata信心之后, producer将会和Topic下所有partition leader保持socket连接;
消息由producer直接通过socket发送到broker,中间不会经过任何"路由层".事实上,消息被路由到哪个partition上,有producer客户端决定.
比如可以采用"random""key-hash""轮询"等,如果一个topic中有多个partitions,那么在producer端实现"消息均衡分发"是必要的.
在producer端的配置文件中,开发者可以指定partition路由的方式.
Consumer均衡算法
当一个group中,有consumer加入或者离开时,会触发partitions均衡.均衡的最终目的,是提升topic的并发消费能力.
1) 假如topic1,具有如下partitions: P0,P1,P2,P3
2) 加入group中,有如下consumer:www.huachengj1980.com C0,C1
3) 首先根据partition索引号对partitions排序: P0,P1,P2,P3
4) 根据consumer.id排序: C0,C1
5) 计算倍数: M = [P0,P1,P2,P3].size www.yongxinzaixian.cn/ [C0,C1].size,本例值M=2(向上取整)
6) 然后依次分配partitions: C0 = [P0,P1],C1=www.gangchengyuLe178.com [P2,P3],即Ci = [P(i * M),P((i + 1) * M -1)]
kafka broker集群内broker之间replica机制
kafka中,replication策略是基于partition,而不是topic;kafka将每个partition数据复制到多个server上,任何一个partition有一个leader和多个follower(可以没有);
备份的个数可以通过broker配置文件来设定.leader处理所有的read-write请求,follower需要和leader保持同步.Follower就像一个"consumer",
消费消息并保存在本地日志中;leader负责跟踪所有的follower状态,如果follower"落后"太多或者失效,leader将会把它从replicas同步列表中删除.
当所有的follower都将一条消息保存成功,此消息才被认为是"committed",那么此时consumer才能消费它,这种同步策略,就要求follower和leader之间必须具有良好的网络环境.
即使只有一个replicas实例存活,仍然可以保证消息的正常发送和接收,只要zookeeper集群存活即可.(备注:不同于其他分布式存储,比如hbase需要"多数派"存活才行)
sudo apt-get install git
git clone https://github.com/kanaka/noVNC
cd noVNC
./utils/launch.sh --vnc 172.17.0.2:5901
//172.17.0.2:为目标机docker容器的IP地址。
//5901:为目标机启动vnc4server时启动的1号服务
vi vnc_token //新建一个文件,写入要访问的目标机的相关内容,格式为: 目标机名称: IP:端口号
utils/websockify/websockify.py www.ysyl157.com--web=./ -www.furggw.com-target-config vnc_www.dfgjpt.com tokens 6080 //运行上一步新建的内容
kafka判定一个follower存活与否的条件有2个:
1) follower需要和zookeeper保持良好的链接
2) 它必须能够及时的跟进leader,不能落后太多.
如果同时满足上述2个条件,那么leader就认为此follower是"活跃的".如果一个follower失效(server失效)或者落后太多,
leader将会把它从同步列表中移除[备注:如果此replicas落后太多,它将会继续从leader中fetch数据,直到足够up-to-date,
然后再次加入到同步列表中;kafka不会更换replicas宿主!因为"同步列表"中replicas需要足够快,这样才能保证producer发布消息时接受到ACK的延迟较小。
当leader失效时,需在followers中选取出新的leader,可能此时follower落后于leader,因此需要选择一个"up-to-date"的follower.kafka中leader选举并没有采用"投票多数派"的算法,
因为这种算法对于"网络稳定性"/"投票参与者数量"等条件有较高的要求,而且kafka集群的设计,还需要容忍N-1个replicas失效.对于kafka而言,
每个partition中所有的replicas信息都可以在zookeeper中获得,那么选举leader将是一件非常简单的事情.选择follower时需要兼顾一个问题,
就是新leader server上所已经承载的partition leader的个数,如果一个server上有过多的partition leader,意味着此server将承受着更多的IO压力.
在选举新leader,需要考虑到"负载均衡",partition leader较少的broker将会更有可能成为新的leader.
在整几个集群中,只要有一个replicas存活,那么此partition都可以继续接受读写操作.
总结:
1) Producer端直接连接broker.www.meiwanyule.cn list列表,从列表中返回TopicMetadataResponse,该Metadata包含Topic下每个partition leader建立socket连接并发送消息.
2) Broker端使用zookeeper用来注册broker信息,以及监控partition leader存活性.
3) Consumer端使用zookeeper用来注册consumer信息,其中包括consumer消费的partition列表等,同时也用来发现broker列表,并和partition leader建立socket连接,并获取消息.
性能测试
目前我已经在虚拟机上做了性能测试。
测试环境:cpu: 双核 内存 :2GB 硬盘:60GB
测试指标
性能相关说明
结论
消息堆积压力测试
单个kafka broker节点测试,启动一个kafka broker和Producer,Producer不断向broker发送数据,
直到broker堆积数据为18GB为止(停止Producer运行)。启动Consumer,不间断从broker获取数据,
直到全部数据读取完成为止,最后查看Producer==Consumer数据,没有出现卡死或broker不响应现象
数据大量堆积不会出现broker卡死
或不响应现象
生产者速率 1.200byte/msg,4w/s左右。2.1KB/msg,1w/s左右 性能上是完全满足要求,其性能主要由磁盘决定
消费者速率 1.200byte/msg,4w/s左右。2.1KB/msg,1w/s左右 性能上是完全满足要求,其性能主要由磁盘决定
Python爬虫全栈教学,零基础教你成编程大神
零基础学爬虫,你要掌握学习那些技能?
apache kafka参考的更多相关文章
- apache kafka消息服务
apache kafka中国社区QQ群:162272557 apache kafka参考 http://kafka.apache.org/documentation.html 消息队列分类: 点对点: ...
- Apache Kafka - Quick Start on Windows
在这篇文章中,我将要介绍如何搭建和使用Apache Kafka在windows环境.在开始之前,简要介绍一下Kafka,然后再进行实践. Apache Kafka Kafka是分布式的发布-订阅消息的 ...
- How To Install Apache Kafka on Ubuntu 14.04
打算学习kafka ,接触一些新的知识.加油!!! 参考:https://www.digitalocean.com/community/tutorials/how-to-install-apache- ...
- apache kafka & CDH kafka源码编译
Apache kafka编译 前言 github网站kafka项目的README.md有关于kafka源码编译的说明 github地址:https://github.com/apache/kafka ...
- 《Apache kafka实战》读书笔记-kafka集群监控工具
<Apache kafka实战>读书笔记-kafka集群监控工具 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 如官网所述,Kafka使用基于yammer metric ...
- 《Apache Kafka实战》读书笔记-调优Kafka集群
<Apache Kafka实战>读书笔记-调优Kafka集群 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.确定调优目标 1>.常见的非功能性要求 一.性能( ...
- 《Apache kafka实战》读书笔记-管理Kafka集群安全之ACL篇
<Apache kafka实战>读书笔记-管理Kafka集群安全之ACL篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 想必大家能看到这篇博客的小伙伴,估计你对kaf ...
- 《Apache Kafka 实战》读书笔记-认识Apache Kafka
<Apache Kafka 实战>读书笔记-认识Apache Kafka 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.kafka概要设计 kafka在设计初衷就是 ...
- Apache Kafka 快速入门
概述 Apache Kafka是一个分布式发布-订阅消息系统和强大的队列,可以处理大量的数据,将消息从一个端点传递到另一个端点.Kafka适合离线和在线消息消费,Kafka消息保存在磁盘上,并在集群内 ...
随机推荐
- DRP项目
DRP(distribution resource planning)分销资源计划是管理企业的分销网络的系统,目的是使企业具有对订单和供货具有快速反应和持续补充库存的能力.解决了随着企业销售规模的逐渐 ...
- [论文笔记] A Practical Architecture of Cloudification of Legacy Applications (2011, SERVICES)
Dunhui Yu, Jian Wang, Bo Hu, Jianxiao Liu, Xiuwei Zhang, Keqing He, and Liang-Jie Zhang. 2011. A Pra ...
- HDU 3033 I love sneakers! 我爱运动鞋 (分组背包+01背包,变形)
题意: 有n<=100双鞋子,分别属于一个牌子,共k<=10个牌子.现有m<=10000钱,问每个牌子至少挑1双,能获得的最大价值是多少? 思路: 分组背包的变形,变成了相反的,每组 ...
- codevs 1487 大批整数排序(水题日常)
时间限制: 3 s 空间限制: 16000 KB 题目等级 : 黄金 Gold 题目描述 Description !!!CodeVS开发者有话说: codevs自从换了评测机,新评测机的内存计算 ...
- css3 省略号
overflow: hidden; text-overflow: ellipsis; white-space: nowrap; 也无需给元素设置固定宽度!
- 如何解决源码安装软件中make时一直重复打印configure信息
在通过源码安装软件时,会出现执行./configure后再make时总是重复打印configure的信息,无法进入下一阶段的安装. 主要原因是系统当前的时间与实际时间不一致,特别是在虚拟机上经常会出现 ...
- Android(java)学习笔记145:Handler消息机制的原理和实现
联合学习 Android 异步消息处理机制 让你深入理解 Looper.Handler.Message三者关系 1. 首先我们通过一个实例案例来引出一个异常: (1)布局文件activity_m ...
- WPF知识点全攻略10- 路由事件
路由事件是WPF不得不提,不得不会系列又一 先来看一下他的定义: 功能定义:路由事件是一种可以针对元素树中的多个侦听器(而不是仅针对引发该事件的对象)调用处理程序的事件. 实现定义:路由事件是一个 C ...
- pytorch中的view
https://ptorch.com/news/59.html view()相当于reshape(),其中参数若为-1表示当前的size根据其余size推断
- python多进程与多线程编程
进程(process)和线程(thread)是非常抽象的概念.多线程与多进程编程对于代码的并发执行,提升代码运行效率和缩短运行时间至关重要.下面介绍一下python的multiprocess和thre ...