转载并修改自:

http://www.cnblogs.com/wulangzhou/archive/2013/03/14/2959660.html

简单的取拿游戏
一堆石子(或者其它的什么东西),下面是简单的取拿游戏规则:
两名玩家,称为 I 和 II;
有一堆石子,一共 21 个;
一次移动操作包括取走 1 个,2 个,或者 3 个石子,至少得取走 1 个,至多取走 3 个。
玩家 I 先开始,交替取,不可不取。
取走最后一个石子的获胜。

我们可以反向推导。
如果只有 1 个,2 个或者 3 个石子留下,那么下一个将要移动的玩家获胜。
如果有 4 个留下,当前这个玩家取走后留下的石子数必然是 1 个,2 个或者 3 个,这样另一个玩家必胜,因此 4 对于将要开始移动的玩家而言是必败的局面,而对前一个玩家而言是必胜的局面。
如果有 5,6,7 个留下,玩家必须得给对方留下 4 个才能保证自己获胜。
如果有 8 个留下,那么下一个玩家必须留下 5,6,7 个,这样先前那个玩家获胜。
很容易发现,0,4,8,12,16 是我们希望留下的局面,我们希望状态尽可能向这些局面转化。由于本题起初是 21 个石子,由于 21 不是 4 的倍数,因此第一个玩家必然会赢,它只要留下的石子数是 4 的倍数对方就必然输。

这便是 bash 博弈。

P 态和 N 态
在前面的游戏中,0,4,8 等对于先前的玩家(Previous)而言是胜利的局面,称为 P 态。而 1,2,3,5,6,7,9,10,11.。。等对下一个玩家(Next)是胜利的局面,称为 N 态。

在这种无偏组合游戏中,可以从结尾倒推来找出 P 态和 N 态。

步骤1:将所有终结位置标记为必败点(P点);
步骤2: 将所有一步操作能进入必败点(P点)的位置标记为必胜点(N点)
步骤3:如果从某个点开始的所有一步操作都只能进入必胜点(N点) ,则将该点标记为必败点(P点) ;
步骤4: 如果在步骤3未能找到新的必败(P点),则算法终止;否则,返回到步骤2。

很容易看到向 P 态移动会获胜,从一个 P 态开始,你的对手只能移动到 N 态,然后你再移动到 P 态,最终游戏在 P 态终结。

P 态和 N 态有几个特点:

(1) 所有终结点是必败点(P点);

(2) 从任何必胜点(N点)操作,至少有一种方法可以进入必败点(P点);

(3)无论如何操作, 从必败点(P点)都只能进入必胜点(N点).

减法游戏
和上面的取石子游戏类似,假定有一个整数 n,两个玩家轮流从整数中减去一个数 s,其中 s 的取值来自集合 S,对于上面的取石子游戏,S = {1,2,3}。让我们通过类似的倒推找出 P 态。假定 S = {1,3,4}。容易发现 P 态集合是 {0,2,7,9,14,16,。。。}。所有态势集合形成一个循环节,长度为 7。

x 	  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
position P N P N N N N P N P N N N N P ...

 来自《挑战程序设计竞赛》的例题:

Alice和Bob在玩这样一个游戏。给定k个数字a1,a2,...,ak。一开始,有x枚硬币,Alice和Bob轮流取硬币。每次取的硬币数量一定要在a1,a2,...,ak当中。Alice先取,取走最后一枚硬币的一方获胜。当双方都采取最优策略的时候,谁会获胜?假定a1,a2,...,ak当中一定包含1。

代码:

 int X, K, A[MAX_K];
bool win[MAX_X + ];
void solve()
{
win[] = false;
for (int j = ; j <= X; j++)
{
win[j] = false;
for (int i = ; i < K; i++)
{
win[j] |= a[i] <= j && !win[j - a[i]];
}
} if (win[X]) puts("Alice");
else puts("Bob");
}

bash 博弈的更多相关文章

  1. POJ Football Game 【NIMK博弈 && Bash 博弈】

    Football Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 451   Accepted: 178 Descr ...

  2. HDU 2188 基础bash博弈

    基础的bash博弈,两人捐钱,每次不超过m,谁先捐到n谁胜. 对于一个初始值n,如果其不为(m+1)的倍数,那么先手把余数拿掉,后继游戏中不管如何,后手操作后必定会有数余下,那么先手必胜,反之后手必胜 ...

  3. HDU 1525 类Bash博弈

    给两数a,b,大的数b = b - a*k,a*k为不大于b的数,重复过程,直到一个数为0时,此时当前操作人胜. 可以发现如果每次b=b%a,那么GCD的步数决定了先手后手谁胜,而每次GCD的一步过程 ...

  4. HDU 2897 邂逅明下 ( bash 博弈变形

    HDU 2897 邂逅明下 ( bash 博弈变形 题目大意 有三个数字n,p,q,表示一堆硬币一共有n枚,从这个硬币堆里取硬币,一次最少取p枚,最多q枚,如果剩下少于p枚就要一次取完.两人轮流取,直 ...

  5. 51Nod 1067 Bash博弈V2

    这道题告诉我,一定要去尝试,去推算,不要动不动就找度娘要答案.(惭愧惭愧) 既然是博弈问题,按理我们应该找出规律,怎么找呢,推,把前几项写出来找规律,动手很重要. 上题: 1067 Bash游戏 V2 ...

  6. 51nod1066(bash博弈)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1066 题意:中文题诶- 思路:感觉博弈全靠yy- 在双方都没有 ...

  7. 51nod_1831: 小C的游戏(Bash博弈 找规律)

    题目链接 此类博弈不需要考虑sg函数,只需要确定必胜态和必败态,解题思路一般为打败先打表找规律,而后找规律给出统一的公式.打表方式:给定初始条件(此题中为ok[0]=ok[1]=0),然后从低到高枚举 ...

  8. (Bash博弈 大数) 51nod1068 Bash游戏 V3

    1068 Bash游戏 V3   有一堆石子共有N个.A B两个人轮流拿,A先拿.每次拿的数量只能是2的正整数次幂,比如(1,2,4,8,16....),拿到最后1颗石子的人获胜.假设A B都非常聪明 ...

  9. (Bash博弈)51nod1067 Bash游戏 V2

    1067 Bash游戏 V2 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次只能拿1,3,4颗,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N,问最后谁能赢得 ...

随机推荐

  1. 百度UEditor富文本上传图片

    项目中使用UEditor发现设置图片自定义保存路径会出现<请求后台配置项http错误,上传功能将不能正常使用!错误> /* 上传图片配置项 */ "imageActionName ...

  2. Redis的集群方案之Sentinel(哨兵模式)(待实践)

    哨兵模式是主从切换的一种方案,但是可以借助此方案实现集群,达到高可用. 先收集教程,待实践. 参考: https://redis.io/topics/sentinel(官方文档) http://ife ...

  3. java.lang.RuntimeException: JPedal Trial has now expired

    具体提示: java.lang.RuntimeException: JPedal Trial has now expired jpedal-server-trial.jar jar包过期了,jpeda ...

  4. 剑指Offer —— BFS 宽度优先打印

    https://www.nowcoder.net/practice/7fe2212963db4790b57431d9ed259701?tpId=13&tqId=11175&tPage= ...

  5. react 项目实战(一)创建项目 及 服务端搭建

    1.安装 React社区提供了众多的脚手架,这里我们使用官方推荐的create-react-app. //安装脚手架 npm install -g create-react-app //生成并运行项目 ...

  6. DES加密算法的C++实现

    <信息安全技术>这门课又在讲 DES 加密算法了,以前用纯C写过一次,这次我用 C++ 重新写了一个,写篇文章以备后用.本文介绍了 DES 算法加密的大致步骤和整体流程. 一.DES算法原 ...

  7. [办公应用]如何打印较小边距的PPT讲义(或者每页打印16页)

    关键词:打印 PPT 讲义 4张 边距   今天同事问我如何打印PowerPoint的讲义.她自己使用PowerPoint打印讲义,设置每页4张,但是页边距太大:觉得浪费很大. 经过网上查阅后,现将方 ...

  8. ssh服务常见问题及其解决办法

    1 统一解决办法 执行sshd -t,这样就可以指出是哪里出问题了. 所有的服务都应该有这个测试选项,否则出错了都不知道在哪里出的问题. 2 root用户登录,密码是对的,但是报“Permission ...

  9. [Android 编译(一)] Ubuntu 16.04 LTS 成功编译 Android 6.0 源码教程

    本文转载自:[Android 编译(一)] Ubuntu 16.04 LTS 成功编译 Android 6.0 源码教程 1 前言 经过3天奋战,终于在Ubuntu 16.04上把Android 6. ...

  10. 微软2016校园招聘在线笔试 [Recruitment]

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 A company plans to recruit some new employees. There are N ca ...