Description

某人在山上种了N棵小树苗。冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L*L的正方形塑料薄膜将小树遮起来。我们不妨将山建立一个平面直角坐标系,设第i棵小树的坐标为(Xi,Yi),3个L*L的正方形的边要求平行与坐标轴,一个点如果在正方形的边界上,也算作被覆盖。当然,我们希望塑料薄膜面积越小越好,即求L最小值。

Input

第一行有一个正整数N,表示有多少棵树。接下来有N行,第i+1行有2个整数Xi,Yi,表示第i棵树的坐标,保证不会有2个树的坐标相同。

Output

一行,输出最小的L值。

Sample Input

4
0 1
0 -1
1 0
-1 0

Sample Output

1

HINT

100%的数据,N<=20000

题解

把所有的点用一个最小的矩形圈起来,显然第一个正方形摆在四个角其中的一个,

删去它覆盖的点后,剩下的点变成一个子问题,再放一次正方形,判断下剩下的点是否在一个正方形内

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<set>
#include<ctime>
#include<queue>
#include<cmath>
#include<algorithm>
#define inf 1000000000
#define ll long long
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,L,mid;
struct data{int x[],y[],top;}a,b;
void cut(data &a,int x1,int y1,int x2,int y2)
{
int tot=;
for(int i=;i<=a.top;i++)
if(a.x[i]<x1||a.x[i]>x2||a.y[i]<y1||a.y[i]>y2)
{
tot++;
a.x[tot]=a.x[i];
a.y[tot]=a.y[i];
}
a.top=tot;
}
void solve(data &a,int fc)
{
int x1=inf,y1=inf,x2=-inf,y2=-inf;
for(int i=;i<=a.top;i++)
{
x1=min(a.x[i],x1),x2=max(a.x[i],x2);
y1=min(a.y[i],y1),y2=max(a.y[i],y2);
}
if(fc==)
cut(a,x1,y1,x1+mid,y1+mid);
if(fc==)
cut(a,x2-mid,y1,x2,y1+mid);
if(fc==)
cut(a,x1,y2-mid,x1+mid,y2);
if(fc==)
cut(a,x2-mid,y2-mid,x2,y2);
}
bool jud()
{
data b;
for(int x=;x<=;x++)
for(int y=;y<=;y++)
{
b.top=a.top;
for(int i=;i<=b.top;i++)
b.x[i]=a.x[i],b.y[i]=a.y[i];
solve(b,x);solve(b,y);
int x1=inf,y1=inf,x2=-inf,y2=-inf;
for(int i=;i<=b.top;i++)
{
x1=min(b.x[i],x1),x2=max(b.x[i],x2);
y1=min(b.y[i],y1),y2=max(b.y[i],y2);
}
if(x2-x1<=mid&&y2-y1<=mid)return ;
}
return ;
}
int main()
{
n=read();a.top=n;
for(int i=;i<=a.top;i++)
a.x[i]=read(),a.y[i]=read();
int l=,r=inf;
while(l<=r)
{
mid=(l+r)>>;
if(jud())L=mid,r=mid-;
else l=mid+;
}
printf("%d\n",L);
}

bzoj1052 [HAOI2007]覆盖问题 - 贪心的更多相关文章

  1. [BZOJ1052][HAOI2007]覆盖问题 二分+贪心

    1052: [HAOI2007]覆盖问题 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2053  Solved: 959 [Submit][Sta ...

  2. [bzoj1052] [HAOI2007]覆盖问题

    Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L * L的正方形塑料薄膜 ...

  3. bzoj1052: [HAOI2007]覆盖问题(二分+构造)

    貌似又写出了常数挺优(至少不劣)的代码>v< 930+人AC #49 写了个O(nlogn)貌似比一些人O(n)还快2333333 这题还是先二分答案,check比较麻烦 显然正方形一定以 ...

  4. 【BZOJ1052】 [HAOI2007]覆盖问题

    BZOJ1052 [HAOI2007]覆盖问题 前言 小清新思维题. 最近肯定需要一些思维题挽救我这种碰到题目只会模板的菜鸡. 这题腾空出世? Solution 考虑一下我们二分答案怎么做? 首先转换 ...

  5. 【BZOJ1052】覆盖问题(贪心)

    [BZOJ1052]覆盖问题(贪心) 题面 BZOJ 洛谷 题解 这题好神仙啊. 很明显可以看出来要二分一个边长. 那么如何\(check\)呢? 我们把所有点用一个最小矩形覆盖, 那么必定每个边界上 ...

  6. 【BZOJ 1052】 1052: [HAOI2007]覆盖问题 (乱搞)

    1052: [HAOI2007]覆盖问题 Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄 膜把这些小树遮盖起来,经过一番长久的 ...

  7. 洛谷 P2218 [HAOI2007]覆盖问题 解题报告

    P2218 [HAOI2007]覆盖问题 题目描述 某人在山上种了\(N\)棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他 ...

  8. 【bzoj1052】覆盖问题

    [bzoj1052]覆盖问题 分析 考虑二分\(L\)的值,然后判断3个\(L*L\)能否覆盖所有的点. 这时候出现了两种可能的思路. 思路1 首先,3是一个很小的常数. 我们想:假如能探究出1和2的 ...

  9. BZOJ 1052: [HAOI2007]覆盖问题

    BZOJ 1052: [HAOI2007]覆盖问题 题意:给定平面上横纵坐标在-1e9~1e9内的20000个整数点的坐标,用三个大小相同边平行于坐标轴的正方形覆盖(在边界上的也算),问正方形的边长最 ...

随机推荐

  1. Android推送服务(1)几种实现方式

    1.几种常见的解决方案实现原理 1)轮询(Pull)方式:应用程序应当阶段性的与服务器进行连接并查询是否有新的消息到达,你必须自己实现与服务器之间的通信,例如消息排队等.而且你还要考虑轮询的频率,如果 ...

  2. APP多渠道打包

    多渠道打包的概念: 打包是指使用证书文件对app签名生成一个apk文件. 多渠道打包指的就是我们的app在开发完成之后需要投放到不同的市场,比如说Google市场.百度市场等,为了统计应用在各个市场的 ...

  3. [转]无废话SharePoint入门教程二[SharePoint发展、工具及术语]

    本文转自:http://www.cnblogs.com/iamlilinfeng/p/3186919.html 一.前言 1.由于上一篇文章的标题命名失误,此篇标题写给百度搜索”什么是SharePoi ...

  4. jQuery Ajax使用实例

    <script src="http://cdn.bootcss.com/jquery/1.11.2/jquery.js"></script> <scr ...

  5. AJPFX关于modifier总结

    修饰符总结 Modifiers        函数修饰符始终在返回值类型之前!!!        变量修饰符始终在变量类型之前!!!---------------------------------- ...

  6. crontab安装及使用

    linux下crontab安装yum -y install crontabs service crond start     //启动服务service crond stop      //关闭服务s ...

  7. VM virtualBox网络地址设置

    目的:在虚拟机LINUX中,可用通过主机访问到虚机内容. 问题描述,在虚机系统中,ip地址一直为127.0.0.1,无法在主机中建立连接 参考文章:https://cnzhx.net/blog/vir ...

  8. ubunut在线音乐比方软件

    今天安装了一个音乐在线播放软件,忍不住要来赞一下, 之前一直都是用网页在线的qq音乐听的,这样就有点感觉不爽了, 今天突然想起来好像在网上看到的在ubuntu下有用网易云音乐的,就上网看了一下 还真的 ...

  9. Java Web数据库篇之MySQL特性

    MySQL ExplainEXPLAIN 命令的输出内容大致如下: mysql> explain select * from user_info where id = 2\G********** ...

  10. es6 基础语法

    var c= 1 <!--都不能预解析-->let a = 1//const不能修改变量const b = 1 箭头函数 =>var c = function fun(a, b) { ...