POJ 3680_Intervals
题意:
给定区间和该区间对应的权值,挑选一些区间,求使得每个数都不被K个区间覆盖的最大权值和。
分析:
如果K=1,即为区间图的最大权独立集问题。可以对区间所有端点排序后利用动态规划的方法,设dp[i]为只考虑区间右端点小于等于xi的区间所得到的最大总权重。
dp[i] = max(dp[i - 1], max{dp[j] + w[k])|a[k] = x[j]且b[k] = x[i]}
K>1,既然求权重最大值,利用最小费用流,很容易想到从a[i]到b[i]连一条容量为1,费用为−w[i]的边,但是如何限制每个数不被超过K个区间覆盖呢?从i到i+1连一条容量为K,费用为0的边,这样便限制了流经每个端点的流量不超过K,也就满足每个数不被超过K个区间覆盖啦~注意区间端点的离散化~~
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int maxn = 505, maxm = 1000;
const int INF = 0x3f3f3f3f;
int s, t, tot;
int dist[maxm], prevv[maxm], preve[maxm], head[maxm];
int a[maxn], b[maxn], w[maxn], tt[maxm];
bool in[maxn];
struct Edge{ int from, to, next, cap, cost;}edge[maxm * 3];
void add_edge(int from, int to, int cap, int cost)
{
edge[tot].to = to;
edge[tot].from = from;
edge[tot].cap = cap;
edge[tot].cost = cost;
edge[tot].next = head[from];
head[from] = tot++;
edge[tot].to = from;
edge[tot].from = to;
edge[tot].cap = 0;
edge[tot].cost = -cost;
edge[tot].next = head[to];
head[to] = tot++;
}
int mincost()
{
int flow=0, cost=0;
for(;;){
memset(dist, 0x3f, sizeof(dist));
memset(in, false, sizeof(in));
queue<int>q;
q.push(s);
in[s] = true;
dist[s]=0;
while(!q.empty()){
int u = q.front();q.pop();
in[u] = false;
for(int i = head[u]; i != -1; i = edge[i].next){
Edge e = edge[i];
if(e.cap>0 && dist[e.to] > dist[u] + e.cost){
dist[e.to] = dist[u] + e.cost;
prevv[e.to] = u, preve[e.to] = i;
if(!in[e.to]){
in[e.to] = true;
q.push(e.to);
}
}
}
}
if(dist[t] == INF) return cost;
int d = INF;
for(int i = t; i != s; i = prevv[i])
d = min(d, edge[preve[i]].cap);
flow += d;
cost += dist[t] * d;
for(int i = t; i != s; i = prevv[i]){
edge[preve[i]].cap -= d;
edge[preve[i]^1].cap += d;
}
}
}
int main()
{
int c;scanf("%d",&c);
while(c--){
int N, K;
memset(head,-1,sizeof(head));
tot = 0;
int n = 0;
scanf("%d%d",&N, &K);
for(int i = 0; i < N; i++){
scanf("%d%d%d", &a[i], &b[i], &w[i]);
tt[n++] = a[i];
tt[n++] = b[i];
}
sort(tt, tt + n);
int nn = unique(tt, tt +n) - tt;
int na, nb;
for(int i = 0; i < N; i++){
na = lower_bound(tt, tt + nn, a[i]) - tt;
nb = lower_bound(tt, tt + nn, b[i]) - tt;
add_edge(na + 1, nb + 1, 1, -w[i]);
}
s = 0, t = nn + 1;
add_edge(s, 1, K, 0);
for(int i = 1; i <= nn; i++)
add_edge(i, i + 1, K, 0);
printf("%d\n",-mincost());
}
return 0;
}
其实这题也可以是从i+1向i连一条容量为1,权值为w[i]的边,用求出的最小费用流减去所有区间权值和,再取负数就好啦~实际上是取最小费用流对应的区间之外的区间,因为建图保证每个点都不被超过K个区间覆盖,所以不用担心与题目不符啦~~
tle了一整天。。。。
很巧妙的构图~~~
POJ 3680_Intervals的更多相关文章
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治
The Pilots Brothers' refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22286 ...
- POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 37427 Accepted: 16288 Descr ...
- POJ 3254. Corn Fields 状态压缩DP (入门级)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9806 Accepted: 5185 Descr ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- POJ 2255. Tree Recovery
Tree Recovery Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11939 Accepted: 7493 De ...
- POJ 2752 Seek the Name, Seek the Fame [kmp]
Seek the Name, Seek the Fame Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 17898 Ac ...
- poj 2352 Stars 数星星 详解
题目: poj 2352 Stars 数星星 题意:已知n个星星的坐标.每个星星都有一个等级,数值等于坐标系内纵坐标和横坐标皆不大于它的星星的个数.星星的坐标按照纵坐标从小到大的顺序给出,纵坐标相同时 ...
随机推荐
- AngularJS入门 & 分页 & CRUD示例
一.AngularJS 简介 AngularJS 诞生于2009年,由Misko Hevery 等人创建,后为Google所收购.是一款优秀的前端JS框架,已经被用于Google的多款产品当中. ...
- SpringMvc如何将Url 映射到 RequestMapping (二)
昨天简单分析了Springmvc 中 RequestMapping 配置的url和请求url之间的匹配规则.今天详细的跟踪一下一个请求url如何映射到Controller的对应方法上 一.入口 org ...
- Java语法基础-final关键字
final关键字主要用在三个地方:变量.方法.类. 对于一个final变量,如果是基本数据类型的变量,则其数值一旦在初始化之后便不能更改: 如果是引用类型的变量,则在对其初始化之后便不能再让其指向另一 ...
- Activity的四种启动模式区别
(1) standard 模式启动模式,每次激活Activity时都会创建Activity,并放入任务栈中. (2) singleTop 如果在任务的栈顶正好存在该Activity的实例, 就重用该实 ...
- iOS:swift :可选类型
import UIKit /*: 可选类型 * 可选类型表示变量可以有值, 也可以没有值 * C 和 Objective-C 中并没有可选类型这个概念 * Swift中只有可选类型才可以赋值为nil ...
- C++ 继承/派生、访问属性、构造函数
1.子类继承父类的继承方式:public,private,protected,不写则默认为private: 2.子类会继承父类的全部成员(除了构造函数.析构函数,虽然析构函数有virtual,但是不是 ...
- QT5:先导篇 算法
一.简介 QT的<QtAlgorithms>和<QtGlobal>模块提供了几种常用算法 二.QtAlgorithms 三.QtGlobal
- C#导出word [无规则表结构+模板遇到的坑]
1)当然可以考虑使用aspose.word.使用书签替换的方案替换模板中对应的书签值. 2)但是我使用了Interop.Word,下面记录使用类及要注意的地方 3)使用类 Report.cs 来自于网 ...
- js页面跳转定位
A页面 <!DOCTYPE html> <html> <head> <meta name="viewport" content=" ...
- [Luogu] P2817 宋荣子的城堡
题目描述 saruka有一座大大的城堡!城堡里面有n个房间,每个房间上面都写着一个数字p[i].有一天,saruka邀请他的小伙伴LYL和MagHSK来城堡里玩耍(为什么没有妹子),他们约定,如果某一 ...