奇数度数 bzoj-2443 Usaco-2011 Open

题目大意:给定一个n个点m条边的无向图,问是否有一种选出一些边的方式使得所有点的度数都是奇数。

注释:$1\le n \le 5\cdot 10^4$,$1\le m\le 10^5$。


想法

结论题:对于一个联通块来讲,如果求出它的生成树。只考虑生成树上的边的选取情况是否可能即是这个联通块的答案。

证明:如果存在一种,选取生成树以外的边满足题意,我们可以将这条边覆盖的树边全部取反,将该边舍去,仍然满足题意。

故此,用并查集求出生成树,然后在上面跑树形dp即可。

最后,附上丑陋的代码... ...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 50010
#define M 100010
using namespace std;
int head[N],to[N<<1],nxt[N<<1],val[N<<1],cnt;
int is[M],tot,n,m,fa[N],f[N],vis[N];
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);}
void add(int u,int v,int w) {to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;}
void dfs(int pos,int fa)
{
int now=0; vis[pos]=1;
for(int i=head[pos];i;i=nxt[i]) if(to[i]!=fa)
{
dfs(to[i],pos);
if(f[to[i]]) now++;
else is[val[i]]=1,tot--;
}
f[pos]=!(now&1);
}
int main()
{
n=rd(),m=rd(); tot=m;
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1;i<=m;i++)
{
int x=rd(),y=rd();
int dx=find(x),dy=find(y);
if(dx!=dy) add(x,y,i),add(y,x,i),fa[dx]=dy;
else is[i]=1,tot--;
}
for(int i=1;i<=n;i++) if(!vis[i])
{
dfs(i,0); if(f[i]) {puts("-1"); return 0;}
}
printf("%d\n",tot);
for(int i=1;i<=m;i++) if(!is[i]) printf("%d\n",i);
return 0;
}

小结:好题啊,真心好题。首先这个结论不是想Gem那样没法猜的结论,这个结论是可以证出来的。其次树形dp很常规啊!

[bzoj2443][Usaco2011 Open]奇数度数_树形dp_生成树_并查集的更多相关文章

  1. BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集+树形DP

    BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集. Description 奶牛们遭到了进攻!在他们的共和国里,有N(1 <= N <=50,000)个城市,由M(1 ...

  2. [bzoj1040][ZJOI2008]骑士_树形dp_基环树_并查集

    骑士 bzoj-1040 ZJOI-2008 题目大意:n个骑士,每个骑士有权值val和一个讨厌的骑士.如果一个骑士讨厌另一个骑士那么他们将不会一起出战.问出战的骑士最大atk是多少. 注释:$1\l ...

  3. [bzoj2097][Usaco2010 Dec]Exercise 奶牛健美操_贪心_树形dp_二分

    Exercise bzoj-2097 Usaco-2010 Dec 题目大意:题目链接 注释:略. 想法:题目描述生怕你不知道这题在考二分. 关键是怎么验证?我们想到贪心的删边. 这样的策略是显然正确 ...

  4. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

  5. BZOJ_1864_[Zjoi2006]三色二叉树_树形DP

    BZOJ_1864_[Zjoi2006]三色二叉树_树形DP 题意: 分析:递归建树,然后DP,从子节点转移. 注意到红色和蓝色没有区别,因为我们可以将红蓝互换而方案是相同的.这样的话我们只需要知道当 ...

  6. BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash

    BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash 题意: 给你一棵树每个点有一个权值,要求修改最少的权值,使得每个节点的权值等于其儿子的权值和且儿子的权值都相等. 分析: 首先我们 ...

  7. B20J_4027_[HEOI2015]兔子与樱花_树形DP

    B20J_4027_[HEOI2015]兔子与樱花_树形DP 题意: 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编 ...

  8. BZOJ_1040_[ZJOI2008]骑士_树形DP

    BZOJ_1040_[ZJOI2008]骑士_树形DP 题意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪 ...

  9. BZOJ_1060_时态同步_树形DP

    BZOJ_1060_时态同步_树形DP 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1060 分析:水水的树形DP. 用儿子的最大值更新父亲, ...

随机推荐

  1. ssm(Spring、Springmvc、Mybatis)实战之淘淘商城-第五天(非原创)

    文章大纲 一.课程介绍二.前台系统(门户系统)搭建介绍三.前台系统(门户系统)搭建实战四.js请求跨域解决五.项目源码与资料下载六.参考文章   一.课程介绍 一共14天课程(1)第一天:电商行业的背 ...

  2. AJPFX总结Socket的低层次Java网络编程

    Socket的低层次Java网络编程 1 Socket通讯 网络上的两个程序通过一个双向的通讯连接实现数据的交换,这个双向链路的一端称为一个Socket.Socket通常用来实现客户方和服务方的连接. ...

  3. 完美单例宏定义(兼容ARC和MRC),项目中可以直接使用

     单例模式: 1.永远只分配一块内存来创建对象 2.提供一个类方法, 返回内部唯一的一个对象(一个实例) 3.最好保证init方法也只初始化一次 写一个宏定义文件,传入宏定义函数名,自动生成符合类名的 ...

  4. poj3050 Hopscotch

    思路: 水题. 实现: #include <iostream> #include <cstdio> #include <set> using namespace s ...

  5. 支付宝SDK

    由于支付宝SDK对于整个支付流程已经介绍的十分详细了,在这里我就简单说一些注意点. 由于存在支付宝可能没有安装的情况,所以我们在调用支付宝支付时,需要对其进行判断,做出不同的处理方式,即是使用客户端支 ...

  6. Jenkins .NET项目持续集成配置

    基本步骤 1. 安装并配置MSBUILD 在系统管理->插件管理->添加MSBuild插件 在系统管理->系统设置->找到MSBuild配置部分,配置不同的MSbuild版本 ...

  7. Node.js——环境变量

  8. Ryubook_1_switch_hub_部署执行

    一.环境: mininet.ovs.Ryu. 二.实验过程: 1.搭建拓扑: 执行sudo mn --topo single,3 --mac --switch ovsk --controller re ...

  9. java “==”和“equals”

    菜呀,只能记笔记了 ==:如果是基本数据类型,比较值,如果是引用类型,比较地址 equals:比较值

  10. TortoiseSVN文件夹操作

    (1).安装SVN·客户端 (2) 建立库: 1.新建文件夹,目录和文件夹名称最好都用英文,不要使用中文: 2.打开文件夹,在空白处按下“shift键+鼠标右键”: 3.在弹出的菜单中选择“Torto ...