[bzoj2443][Usaco2011 Open]奇数度数_树形dp_生成树_并查集
奇数度数 bzoj-2443 Usaco-2011 Open
题目大意:给定一个n个点m条边的无向图,问是否有一种选出一些边的方式使得所有点的度数都是奇数。
注释:$1\le n \le 5\cdot 10^4$,$1\le m\le 10^5$。
想法:
结论题:对于一个联通块来讲,如果求出它的生成树。只考虑生成树上的边的选取情况是否可能即是这个联通块的答案。
证明:如果存在一种,选取生成树以外的边满足题意,我们可以将这条边覆盖的树边全部取反,将该边舍去,仍然满足题意。
故此,用并查集求出生成树,然后在上面跑树形dp即可。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 50010
#define M 100010
using namespace std;
int head[N],to[N<<1],nxt[N<<1],val[N<<1],cnt;
int is[M],tot,n,m,fa[N],f[N],vis[N];
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);}
void add(int u,int v,int w) {to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;}
void dfs(int pos,int fa)
{
int now=0; vis[pos]=1;
for(int i=head[pos];i;i=nxt[i]) if(to[i]!=fa)
{
dfs(to[i],pos);
if(f[to[i]]) now++;
else is[val[i]]=1,tot--;
}
f[pos]=!(now&1);
}
int main()
{
n=rd(),m=rd(); tot=m;
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1;i<=m;i++)
{
int x=rd(),y=rd();
int dx=find(x),dy=find(y);
if(dx!=dy) add(x,y,i),add(y,x,i),fa[dx]=dy;
else is[i]=1,tot--;
}
for(int i=1;i<=n;i++) if(!vis[i])
{
dfs(i,0); if(f[i]) {puts("-1"); return 0;}
}
printf("%d\n",tot);
for(int i=1;i<=m;i++) if(!is[i]) printf("%d\n",i);
return 0;
}
小结:好题啊,真心好题。首先这个结论不是想Gem那样没法猜的结论,这个结论是可以证出来的。其次树形dp很常规啊!
[bzoj2443][Usaco2011 Open]奇数度数_树形dp_生成树_并查集的更多相关文章
- BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集+树形DP
BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集. Description 奶牛们遭到了进攻!在他们的共和国里,有N(1 <= N <=50,000)个城市,由M(1 ...
- [bzoj1040][ZJOI2008]骑士_树形dp_基环树_并查集
骑士 bzoj-1040 ZJOI-2008 题目大意:n个骑士,每个骑士有权值val和一个讨厌的骑士.如果一个骑士讨厌另一个骑士那么他们将不会一起出战.问出战的骑士最大atk是多少. 注释:$1\l ...
- [bzoj2097][Usaco2010 Dec]Exercise 奶牛健美操_贪心_树形dp_二分
Exercise bzoj-2097 Usaco-2010 Dec 题目大意:题目链接 注释:略. 想法:题目描述生怕你不知道这题在考二分. 关键是怎么验证?我们想到贪心的删边. 这样的策略是显然正确 ...
- BZOJ_1304_[CQOI2009]叶子的染色_树形DP
BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...
- BZOJ_1864_[Zjoi2006]三色二叉树_树形DP
BZOJ_1864_[Zjoi2006]三色二叉树_树形DP 题意: 分析:递归建树,然后DP,从子节点转移. 注意到红色和蓝色没有区别,因为我们可以将红蓝互换而方案是相同的.这样的话我们只需要知道当 ...
- BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash
BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash 题意: 给你一棵树每个点有一个权值,要求修改最少的权值,使得每个节点的权值等于其儿子的权值和且儿子的权值都相等. 分析: 首先我们 ...
- B20J_4027_[HEOI2015]兔子与樱花_树形DP
B20J_4027_[HEOI2015]兔子与樱花_树形DP 题意: 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编 ...
- BZOJ_1040_[ZJOI2008]骑士_树形DP
BZOJ_1040_[ZJOI2008]骑士_树形DP 题意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪 ...
- BZOJ_1060_时态同步_树形DP
BZOJ_1060_时态同步_树形DP 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1060 分析:水水的树形DP. 用儿子的最大值更新父亲, ...
随机推荐
- Android开发中使用startActivityForResult()方法从Activity A跳转Activity B出现B退出时A也同时退出的解决办法
最近一个 App 中用到了 startActivityForResult() 方法,使用的时候却出现了一些问题,比如我在 Activity A 中调用该方法向 Activity B 中跳转,如果 B ...
- A/B宣言
作者:Dunne & Raby A B 肯定的 批判的 解决问题的 发现问题的 设计即流程 设计即方法 给出答案 问问题 为行业中服务 为社会服务 说明世界是怎样的 说明世界可能是怎样的 科 ...
- 【译】x86程序员手册35-9.8异常条件
译注:一些异常没有翻译,因为看书时主要为了理解linux代码,所以代码中没有主要使用的就没有仔细看.这部分内容后期再看时再进行翻译. 9.8 Exception Conditions 异常条件 The ...
- VirtualBox Networking Model
- xxtea 文件加密与解密
加密 cocos luacompile -s src -d dst_dir -e -b xxxxx -k xxxxx --disable-compile 解密 cocos luacompile -s ...
- Java集合(三)--Collection、Collections和Arrays
Collection: Collection是集合类的顶级接口,提供了对集合对象进行基本操作的通用接口方法.Collection接口的意义是为各种具体的集合提供了最大化 的统一操作方式,其直接继承接口 ...
- Server.MapPath() 用法
Server.MapPath() ./当前目录/网站主目录../上层目录~/网站虚拟目录 如果当前的网站目录为E:\wwwroot 应用程序虚拟目录为E:\wwwroot\company 浏览的页 ...
- pytorch之Tensor与Variable的区别
首先在变量的操作上:Tensor对象支持在原对象内存区域上修改数据,通过“+=”或者torch.add()方法而Variable不支持在原对象内存区域上修改数据Variable对象可求梯度,并且对Va ...
- centOS取消锁屏
自己在使用虚拟机运行centos 7时,centos 7默认几分钟不动就锁屏,实在很讨厌,所以在设置中将其去掉 1.左上角点击应用程序,在下面选择系统工具,在系统工具中选择设置 2.选择设置下面的隐私 ...
- 大项目之网上书城(九)——订单Demo
目录 大项目之网上书城(九)--订单Demo 主要改动 1.OrderServiceImpl 代码 2.OrderDaoImpl 代码 3.OrderitemDaoImpl 代码 4.orderite ...