题意:给出一个长度在 100 000 以内的正整数序列,大小不超过 10^ 12。求一个连续子序列,使得在所有的连续子序列中,

它们的GCD值乘以它们的长度最大。

析:暴力枚举右端点,然后在枚举左端点时,我们对gcd相同的只保留一个,那就是左端点最小的那个,只有这样才能保证是最大,然后删掉没用的。

UVaLive上的数据有问题,比赛时怎么也交不过,后来去别的oj交就过了。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL a[maxn];
struct node{
int posi, posj;
LL val;
bool operator < (const node &p) const{
return val < p.val || (val == p.val && posi < p.posi);
}
node(int p, int q, LL x) : posi(p), val(x), posj(q) { }
}; vector<node> v;
vector<node> :: iterator it, it1; int main(){
int T; cin >> T;
while(T--){
scanf("%d", &n);
for(int i = 0; i < n; ++i) scanf("%lld", a+i);
v.clear();
LL ans = 0;
for(int i = 0; i < n; ++i){
ans = Max(ans, a[i]);
for(int j = 0; j < v.size(); ++j){
ans = Max(ans, v[j].val * (v[j].posj-v[j].posi+1));
v[j].val = gcd(v[j].val, a[i]);
v[j].posj = i;
}
v.push_back(node(i, i, a[i]));
sort(v.begin(), v.end());
it = v.begin();
++it;
while(it != v.end()){
it1 = it; --it1;
if(it1->val == it->val) it = v.erase(it);
else ++it;
}
} for(int i = 0; i < v.size(); ++i)
ans = Max(ans, v[i].val * (v[i].posj-v[i].posi+1));
printf("%lld\n", ans);
}
return 0;
}

Gym 100299C && UVaLive 6582 Magical GCD (暴力+数论)的更多相关文章

  1. UVa 1642 Magical GCD (暴力+数论)

    题意:给出一个长度在 100 000 以内的正整数序列,大小不超过 10^ 12.求一个连续子序列,使得在所有的连续子序列中, 它们的GCD值乘以它们的长度最大. 析:暴力枚举右端点,然后在枚举左端点 ...

  2. 【bzoj4052】[Cerc2013]Magical GCD 暴力

    题目描述 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12.  求一个连续子序列,使得在所有的连续子序列中,它们的GCD值乘以它们的长度最大. 样例输入 1 5 30 60 2 ...

  3. UVa 1642 - Magical GCD(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. 4052: [Cerc2013]Magical GCD

    4052: [Cerc2013]Magical GCD Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 148  Solved: 70[Submit][ ...

  5. 【BZOJ】【4052】【CERC2013】Magical GCD

    DP/GCD 然而蒟蒻并不会做…… Orz @lct1999神犇 首先我们肯定是要枚举下端点的……嗯就枚举右端点吧…… 那么对于不同的GCD,对应的左端点最多有log(a[i])个:因为每次gcd缩小 ...

  6. 【BZOJ4052】[Cerc2013]Magical GCD 乱搞

    [BZOJ4052][Cerc2013]Magical GCD Description 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12.  求一个连续子序列,使得在所有的连续 ...

  7. 【NOIP2014模拟8.17】Magical GCD

    题目 对于一个由正整数组成的序列, Magical GCD 是指一个区间的长度乘以该区间内所有数字的最大公约数.给你一个序列,求出这个序列最大的 Magical GCD. 分析 根据暴力的思想, \( ...

  8. Magical GCD UVA 1642 利用约数个数少来优化 给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量的值最大。输出这个最大值。

    /** 题目:Magical GCD UVA 1642 链接:https://vjudge.net/problem/UVA-1642 题意:给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量 ...

  9. [BZOJ4052][Cerc2013]Magical GCD

    [BZOJ4052][Cerc2013]Magical GCD 试题描述 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12.  求一个连续子序列,使得在所有的连续子序列中,它们 ...

随机推荐

  1. 使用MVP模式重构代码

    之前写了两篇关于MVP模式的文章,主要讲得都是一些概念,这里谈谈自己在Android项目中使用MVP模式的真实感受,并以实例的形式一起尝试来使用MVP模式去重构我们现有的代码. 有兴趣的童鞋可以先去阅 ...

  2. add swapspace file on ubuntu.

    https://askubuntu.com/questions/566745/allocate-swap-after-ubuntu-14-04-lts-installation ----------- ...

  3. FastDFS的配置、部署与API使用解读(1)Get Started with FastDFS(转)

    转载请注明来自:诗商·柳惊鸿CSDN博客,原文链接:FastDFS的配置.部署与API使用解读(1)入门使用教程 1.背景 FastDFS是一款开源的.分布式文件系统(Distributed File ...

  4. CSS属性中Display与Visibility的不同

    大多数人很容易将CSS属性display和visibility混淆,它们看似没有什么不同,其实它们的差别却是很大的.visibility属性用来确定元素是显示还是隐藏,这用visibility=&qu ...

  5. 使用Genymotion调试出现错误INSTALL_FAILED_CPU_ABI_INCOMPATIBLE解决的方法

    今天在使用android studio在Genymotion上调试程序出现INSTALL_FAILED_CPU_ABI_INCOMPATIBLE导致程序安装不了: 后来百度发现是要安装:http:// ...

  6. vmware nat不能上网的解决办法

    1 很多奇怪的问题都是vmware突然不能上网导致的 当yum.pip等包管理工具突然不能上网了时,要ping www.baidu.com,看看网络是不是好的. 2 nat网络出现问题的解决办法 2. ...

  7. java中创建对象的五种方法

    用最简单的描述来区分new关键字和newInstance()方法的区别:newInstance: 弱类型.低效率.只能调用无参构造.new: 强类型.相对高效.能调用任何public构造. newIn ...

  8. ossfs常见配置错误

    以下问题出现在非root用户下 执行echo ××××> /etc/passwd-ossfs  bash: /etc/passwd-ossfs: Permission denied 使用sudo ...

  9. 在docker里查看java进程

    先使用命令查看docker的运行进程 docker ps [root@localhost logs]# docker ps CONTAINER ID        IMAGE             ...

  10. 牛客练习赛42 E.热爆了

    这可能是全场最长的一份代码 问的其实是对于关键点的斯坦纳树大小 考虑补集转化,不合法的点就是它的子树中没有关键点的点和斯坦纳树根的祖先 树根不难求,关键点中dfs序最大最小点的LCA就是了 问题在前者 ...