题目链接[kuangbin带你飞]专题十五 数位DP B - XHXJ’s LIS

题意

给定区间。求出有多少个数满足最长上升子序列(将数看作字符串)的长度为k。

思路

一个数的上升子序列最大长度为10,所以每个上升子序列的状态都能够用10个二进制位来表示。

上升子序列的变化能够用LIS的方式来更新。

dp[len][num][k]

len为当前的位,num为当前上升子序列的状态。k表示子序列的长度。

next[s][num]为记录预处理的子序列的状态变化。

cnt [num]记录各个状态的最长上升子序列的长度。

代码

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <vector> using namespace std; #define LL long long LL dp[20][1<<10][11];
int dis[20];
int cnt[1<<10];
int nxt[10][1<<10]; int getnext(int num, int s)
{
for(int i=s; i<10; i++)
{
if(num & (1<<i))
return (num^(1<<i)) | 1<<s;
}
return num | 1<<s;
} LL dfs(int k, int len, int num, bool flag, bool zero)
{
if(len < 0)
return cnt[num] == k;
if(!flag && dp[len][num][k]!=-1)
return dp[len][num][k];
LL ans = 0;
int end = flag?dis[len]:9;
for(int i=0; i<=end; i++)
ans += dfs(k, len-1, (zero&&i==0)? num:nxt[i][num], flag&&i==end, zero&&i==0);
if(!flag)
dp[len][num][k] = ans;
return ans;
} LL solve(LL n, int k)
{
int pos = 0;
while(n)
{
dis[pos++] = n%10;
n /= 10;
}
return dfs(k, pos-1, 0, 1, 1);
} void init()
{
memset(dp, -1, sizeof(dp));
for(int i=0; i<1<<10; i++)
{
cnt[i] = 0;
for(int j=0; j<10; j++)
{
if(i & (1<<j))
cnt[i]++;
nxt[j][i] = getnext(i, j);
}
}
} int main()
{
int T;
scanf("%d", &T);
init();
for(int i=1; i<=T; i++)
{
long long l, r, k;
scanf("%lld%lld%lld", &l, &r, &k);
printf("Case #%d: %lld\n", i, solve(r, k)-solve(l-1, k));
}
return 0;
}

HDU 4352 XHXJ&#39;s LIS(数位dp&amp;状态压缩)的更多相关文章

  1. XHXJ's LIS HDU - 4352 最长递增序列&数位dp

    代码+题解: 1 //题意: 2 //输出在区间[li,ri]中有多少个数是满足这个要求的:这个数的最长递增序列长度等于k 3 //注意是最长序列,可不是子串.子序列是不用紧挨着的 4 // 5 // ...

  2. Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)

    D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...

  3. HDU 4352 XHXJ's LIS 数位dp lis

    目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...

  4. HDU 4352 XHXJ's LIS HDU(数位DP)

    HDU 4352 XHXJ's LIS HDU 题目大意 给你L到R区间,和一个数字K,然后让你求L到R区间之内满足最长上升子序列长度为K的数字有多少个 solution 简洁明了的题意总是让人无从下 ...

  5. hdu 4352 XHXJ's LIS (数位dp+状态压缩)

    Description #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully readin ...

  6. 【状态压缩DP】HDU 4352 XHXJ'S LIS

    题目大意 Vjudge链接 定义一个数的内部LIS长度表示这个数每个数位构成的序列的LIS长度,给出区间\([l,r]\),求区间内内部LIS长度为\(k\)的数的个数. 输入格式 第一行给出数据组数 ...

  7. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

  8. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  9. hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)

    传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...

随机推荐

  1. html 零散问题

    1.iconfont的使用 https://www.cnblogs.com/yujihang/p/6706056.html 2.阴影效果比较 box-shadow:0 0 6px #000 inset ...

  2. sehlle脚本获取linux服务器基本信息

    将以下代码全选复制在linux机器上新建x.sh文件编辑复制进去执行即可. #获取linux服务器基本信息脚本 #!/bin/bash # #Name:system_info #Ver:1.0 #Au ...

  3. windows开发错误

    2018/07/16: 1.问题: 代码: list <int> listN; error C2065:'list' : undeclared identifier 我已经#include ...

  4. iOS缓存到sandbox

        在手机应用程序开发中,为了减少与服务端的交互次数,加快用户的响应速度,一般都会在iOS设备中加一个缓存的机制,前面一篇文章介绍了iOS设备的内存缓存,这篇文章将设计一个本地缓存的机制. 功能需 ...

  5. “完美”解决微信小程序购物车抛物动画,在连续点击时出现计算错误问题,定时器停不下来。

    最近做,微信点餐小程序,遇到添加商品时出现抛物动画,参考借鉴了这位大神的方法 https://www.cnblogs.com/greengage/p/7815842.html 但出现了一个问题,连续点 ...

  6. [Python3网络爬虫开发实战] 1.4.3-Redis的安装

    Redis是一个基于内存的高效的非关系型数据库,本节中我们来了解一下它在各个平台的安装过程. 1. 相关链接 官方网站:https://redis.io 官方文档:https://redis.io/d ...

  7. thinkphp3.2使用PHPQrcode实现二维码

    Thinkphp中没有二维码相关的生成库,百度有不少工具和库 这里就实例一下通过think3.2搭配phpqrcode来完成生成二维码的功能. 至于phpQrcode库文件 百度很容易找到这里也给大家 ...

  8. nginx+redis安装配置(内存型数据库)实现session的共享

    注意:借鉴原文章:http://www.cnblogs.com/roy-blog/p/7196054.html 感兴趣的可以加一下481845043 java交流群,共同进步. 1 session的概 ...

  9. 真正搞明白Python中Django和Flask框架的区别

    在谈Python中Django框架和Flask框架的区别之前,我们需要先探讨如下几个问题. 一.为什么要使用框架? 为了更好地阐述这个问题,我们把开发一个应用的过程进行类比,往往开发一个应用(web应 ...

  10. Linux基础命令回顾

    前言 说到linux基础命令,网上一搜一箩筐,想学也有很多教程,如果你不幸看到此篇文章,想看就认真看完,毕竟你点进来了不是嘛? 我每次写的文章都是为了分享自己的学习成果或重要知识点,希望能帮助更多的人 ...