Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 17917    Accepted Submission(s): 12558

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 
Sample Input
4
10
20
 
Sample Output
5
42
627
 
看了题解,学了两种方法。一种是母函数,一种是dp。
母函数:组合数学方法,第一次接触。
  此题构造的母函数(1+x^1+x^2+x^3...+x^n)(1+x^2+x^4+x^6...+x^2n).....
  第一项表示(0个1,1个1,2个1,3个1...),第二项表示(0个2,1个2,2个2,3个2,4个2...)以此类推。
  展开后,每一项的指数表示划分的这个数,系数表示该数的划分数。
import java.util.*;
import java.io.*; public class Main { public static int cal(int n)
{
int c1[]=new int [n+1];
int c2[]=new int [n+1];
for(int i=0;i<=n;i++)
{
c1[i]=1;
c2[i]=0;
}
for(int i=2;i<=n;i++)
{
for(int j=0;j<=n;j++)
for(int k=0;k+j<=n;k+=i)
c2[j+k]+=c1[j];
for(int j=0;j<=n;j++)
{
c1[j]=c2[j];
c2[j]=0;
}
}
return c1[n];
}
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n;
while(in.hasNext())
{
n=in.nextInt();
System.out.println(cal(n));
}
} }

dp:

dp[i][j]表示i这个数划分为最大加数不超过j的划分数。

if(i>j)  dp[i][j]=dp[i][j-1]+dp[i-j][j];

else if(i==j)   dp[i][j]=dp[i][j-1]+1;

else if(i<j)   dp[i][j]=dp[i][i];

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std; int dp[][]; int main()
{
int n,m;
//dp[1][1]=1;
for(int i=; i<=; i++)
for(int j=; j<=; j++)
{
if(j==)
dp[i][j]=;
else if(i==j)
dp[i][j]=dp[i][j-]+;
else if(i>j)
dp[i][j]=dp[i][j-]+dp[i-j][j];
else if(i<j)
dp[i][j]=dp[i][i];
}
while(scanf("%d",&n)!=EOF)
{
printf("%d\n",dp[n][n]);
} return ;
}

HDU_1028_Ignatius and the Princess III_(母函数,dp)的更多相关文章

  1. HDU 1028 Ignatius and the Princess III:dp or 母函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 题意: 给你一个正整数n,将n拆分成若干个正整数之和,问你有多少种方案. 注:"4 = ...

  2. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  3. HDOJ/HDU 1029 Ignatius and the Princess IV(简单DP,排序)

    此题无法用JavaAC,不相信的可以去HD1029题试下! Problem Description "OK, you are not too bad, em- But you can nev ...

  4. Ignatius and the Princess III(母函数)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. hdu1028(母函数+DP)

    题目信息:求分解整数n的个数q(n);能够母函数或者DP http://acm.hdu.edu.cn/showproblem.php?pid=1028 AC代码: /***************** ...

  6. hdu 1028 Ignatius and the Princess III 母函数

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  7. HDU 1028Ignatius and the Princess III(母函数简单题)

     Ignatius and the Princess III Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

  8. HDU1028Ignatius and the Princess III(母函数)

    http://acm.hdu.edu.cn/showproblem.php?pid=1028 母函数: 例1:若有1克.2克.3克.4克的砝码各一 枚,能称出哪几种重量?各有几种可能方案? 如何解决这 ...

  9. hdoj 1028 Ignatius and the Princess III(区间dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 思路分析:该问题要求求出某个整数能够被划分为多少个整数之和(如 4 = 2 + 2, 4 = 2 ...

随机推荐

  1. Open Flash Chart 简介

    http://www.ibm.com/developerworks/cn/opensource/os-cn-ecl-ofc/ Open Flash Chart(OFC)是一个开源的 Flash 图表绘 ...

  2. 好纠结啊,JEECG 商业版本号和开源版本号有什么差别呢?

    好纠结啊.JEECG 商业版本号和开源版本号有什么差别呢? 2014-12-18 jeecg JEECG tp=webp" style="width: 698px;" a ...

  3. Android之Activity之间传递对象

    在非常多时候,我们须要在Activity之间传递对象,比方当你点击了某列表的item,须要传递给下一个Activity该对象,那我们须要该怎么做呢? Android支持两种传递对象的方式.一种是bun ...

  4. LinearLayout (线性布局)的分析

    android提供了5中布局,线性布局,相对布局,帧布局.表格布局和绝对布局 线性和相对布局用的是最多的 以下要说的是线性布局 提到线性布局 一定要记住.它里面的全部组件一定不会重叠的, 切不会换行. ...

  5. 怎样设置mysql远程訪问

     Mysql默认是不能够通过远程机器訪问的,通过以下的配置能够开启远程訪问 在MySQL Server端: 运行mysql 命令进入mysql 命令模式, mysql> use mysql; ...

  6. Scroller的应用--滑屏实现

    1.Scroller源代码分析 以下是对Scroller源代码的分析,并附有源代码.例如以下: package android.widget; import android.content.Conte ...

  7. hbase查询_Phoenix及hbase repl命令行两种方式

    一.Phoenix(jdbc)登陆 1.cd /home/mr/phoenix/bin(此路径每个环境里面有可能不一样)2../sqlline.py localhost 二.shell repl Hb ...

  8. 使用自定义的AlertDialog。

    使用自定义的AlertDialog.1.核心的方法是setView(View view):把自己的view放置到dialog中填充.2.setCanceledOnTouchOutside(boolea ...

  9. mysql的启动和停止

    1.检查数据库服务器是否开启:任务管理器-->后台进程-->查看mysqld是否存在.存在说明开启了,反之没开启 2.管理员运行cmd,输入重启指令:net start **(**数据库名 ...

  10. Django总结四

    0.ORM操作 1.必会的13条 返回对象列表的 all filter exclude order_by reverse distinct 特殊的对象列表 values values_list 返回对 ...