Discription

A maze is represented by a tree (an undirected graph, where exactly one way exists between each pair of vertices). In the maze the entrance vertex and the exit vertex are chosen with some probability. The exit from the maze is sought by Deep First Search. If there are several possible ways to move, the move is chosen equiprobably. Consider the following pseudo-code:

DFS(x)
if x == exit vertex then
finish search
flag[x] <- TRUE
random shuffle the vertices' order in V(x) // here all permutations have equal probability to be chosen
for i <- 1 to length[V] do
if flag[V[i]] = FALSE then
count++;
DFS(y);
count++;

V(x) is the list vertices adjacent to x. The flag array is initially filled as FALSE. DFS initially starts with a parameter of an entrance vertex. When the search is finished, variable count will contain the number of moves.

Your task is to count the mathematical expectation of the number of moves one has to do to exit the maze.

Input

The first line determines the number of vertices in the graph n (1 ≤ n ≤ 105). The next n - 1 lines contain pairs of integers ai and bi, which show the existence of an edge between ai and bi vertices (1 ≤ ai, bi ≤ n). It is guaranteed that the given graph is a tree.

Next n lines contain pairs of non-negative numbers xi and yi, which represent the probability of choosing the i-th vertex as an entrance and exit correspondingly. The probabilities to choose vertex i as an entrance and an exit equal  and  correspondingly. The sum of all xi and the sum of all yi are positive and do not exceed 106.

Output

Print the expectation of the number of moves. The absolute or relative error should not exceed 10 - 9.

Example

Input
2
1 2
0 1
1 0
Output
1.00000000000000000000
Input
3
1 2
1 3
1 0
0 2
0 3
Output
2.00000000000000000000
Input
7
1 2
1 3
2 4
2 5
3 6
3 7
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Output
4.04081632653

Note

In the first sample the entrance vertex is always 1 and the exit vertex is always 2.

In the second sample the entrance vertex is always 1 and the exit vertex with the probability of 2/5 will be 2 of with the probability if 3/5 will be 3. The mathematical expectations for the exit vertices 2 and 3 will be equal (symmetrical cases). During the first move one can go to the exit vertex with the probability of 0.5 or to go to a vertex that's not the exit vertex with the probability of 0.5. In the first case the number of moves equals 1, in the second one it equals 3. The total mathematical expectation is counted as 2 / 5 × (1 × 0.5 + 3 × 0.5) + 3 / 5 × (1 × 0.5 + 3 × 0.5)

我们如果把终点T当成树根的话,那么再把S当作起点,路径长度的期望就是 树根T包含S那个儿子的子树大小。

为什么呢?

1.考虑如果一条边在S到T的路径上的话,那么是肯定要经过的,期望就是1;

2.如果一条边不在T到S的路径上,但却在T包含S那个子树里,那么它只有两种可能:被经过2次或者不经过。然后我们再强行带一波数,可以发现两者的概率是相等的(就是我们假设S和边上端点的LCA有p个儿子,那么走包含S那个子树的概率就是 1/p + (p-2)/p * 1/(p-1) +....  = 1/2)

而这两种边数之和(子树中所有边+T到那个儿子的边)正好就是T包含S那个子树的大小,所以我们直接DFS一遍,统计每个点作为终点(树根)的答案即可。

#include<bits/stdc++.h>
#define ll long long
const int maxn=100005;
#define D double
using namespace std;
int n,m,hd[maxn],to[maxn*2],ne[maxn*2],siz[maxn];
D per[maxn],ANS=0,S,T,s[maxn],t[maxn]; void dfs(int x,int fa){
siz[x]=1;
for(int i=hd[x];i;i=ne[i]) if(to[i]!=fa){
dfs(to[i],x);
siz[x]+=siz[to[i]];
s[x]+=s[to[i]];
ANS+=t[x]*s[to[i]]*siz[to[i]];
}
ANS+=t[x]*(S-s[x])*(n-siz[x]);
} int main(){
scanf("%d",&n);
int uu,vv;
for(int i=1;i<n;i++){
scanf("%d%d",&uu,&vv);
to[i]=vv,ne[i]=hd[uu],hd[uu]=i;
to[i+n]=uu,ne[i+n]=hd[vv],hd[vv]=i+n;
} for(int i=1;i<=n;i++){
scanf("%lf%lf",s+i,t+i);
S+=s[i],T+=t[i];
} dfs(1,1); printf("%.20lf\n",ANS/S/T);
return 0;
}

  

Codeforces 123 E Maze的更多相关文章

  1. Codeforces 197D - Infinite Maze

    197D - Infinite Maze 思路:bfs,如果一个点被搜到第二次,那么就是符合要求的. 用vis[i][j].x,vis[i][j].y表示i,j(i,j是取模过后的值)这个点第一次被搜 ...

  2. CodeForces 196B Infinite Maze

    Infinite Maze time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. Codeforces 377 A Maze【DFS】

    题意:给出n*m的矩阵,矩阵由'.'和'#'组成,再给出k,表示需要在'.'处加k堵墙,使得剩下的'.'仍然是连通的 先统计出这个矩阵里面总的点数'.'为sum 因为题目说了一定会有一个解,所以找到一 ...

  4. Codeforces 123E Maze(树形DP+期望)

    [题目链接] http://codeforces.com/problemset/problem/123/E [题目大意] 给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从 ...

  5. Codeforces 377A - Maze

    A. Maze 题目链接:http://codeforces.com/contest/377/problem/A time limit per test 2 seconds memory limit ...

  6. Codeforces Round #222 (Div. 1) A. Maze dfs

    A. Maze 题目连接: http://codeforces.com/contest/377/problem/A Description Pavel loves grid mazes. A grid ...

  7. CodeForces - 123E Maze

    http://codeforces.com/problemset/problem/123/E 题目翻译:(翻译来自: http://www.cogs.pw/cogs/problem/problem.p ...

  8. Codeforces Round #222 (Div. 1) Maze —— dfs(连通块)

    题目链接:http://codeforces.com/problemset/problem/377/A 题解: 有tot个空格(输入时统计),把其中k个空格变为wall,问怎么变才能使得剩下的空格依然 ...

  9. [Codeforces 863C]1-2-3

    Description Ilya is working for the company that constructs robots. Ilya writes programs for enterta ...

随机推荐

  1. python多进程与多线程编程

    进程(process)和线程(thread)是非常抽象的概念.多线程与多进程编程对于代码的并发执行,提升代码运行效率和缩短运行时间至关重要.下面介绍一下python的multiprocess和thre ...

  2. 简易的mysql性能查询脚本

    #!/bin/bash mysqladmin -P3306 -uroot -p -h127. -r -i ext |\ awk -F"|" \ "BEGIN{ count ...

  3. 前端用户体验优化: JS & CSS 各类效果代码段

    前言 不定时更新 在线预览 https://zzyper.github.io/opti... 在线预览的源码 https://github.com/zzyper/opt... 部分内容仅兼容webki ...

  4. JS获取单选框checked的value方法

    ; var obj = document.getElementsByTagName("input"); document.getElementById('gender').oncl ...

  5. 【LeetCode】Spiral Matrix(螺旋矩阵)

    这是LeetCode里的第54道题. 题目要求: 给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素. 示例 1: 输入: [ [ 1, 2, 3 ...

  6. Ubuntu 16.04上thunderbird配置163邮箱出现“配置无法被验证-请查看用户名或密码是否正确?”

    在Ubuntu 16.04 上用thunderbird配置163免费邮箱时出现的提示信息如图1: 图1 提示信息 网上有不少方法都说是将接收和发出的主机名分别改为 imap.ym.163.com 和 ...

  7. 00030_ArrayList集合

    1.数组可以保存多个元素,但在某些情况下无法确定到底要保存多少个元素,此时数组将不再适用,因为数组的长度不可变 2.JDK中提供了一系列特殊的类,这些类可以存储任意类型的元素,并且长度可变,统称为集合 ...

  8. Leetcode 394.字符串编码

    字符串编码 给定一个经过编码的字符串,返回它解码后的字符串. 编码规则为: k[encoded_string],表示其中方括号内部的 encoded_string 正好重复 k 次.注意 k 保证为正 ...

  9. ListView虚拟模式封装

    public class ListViewAH : ListViewEx { #region 虚拟模式相关操作 ///<summary> /// 前台行集合 ///</summary ...

  10. spring,mybatis事务管理配置与@Transactional注解使用

    spring,mybatis事务管理配置与@Transactional注解使用[转]   spring,mybatis事务管理配置与@Transactional注解使用 概述事务管理对于企业应用来说是 ...