Discription

A maze is represented by a tree (an undirected graph, where exactly one way exists between each pair of vertices). In the maze the entrance vertex and the exit vertex are chosen with some probability. The exit from the maze is sought by Deep First Search. If there are several possible ways to move, the move is chosen equiprobably. Consider the following pseudo-code:

DFS(x)
if x == exit vertex then
finish search
flag[x] <- TRUE
random shuffle the vertices' order in V(x) // here all permutations have equal probability to be chosen
for i <- 1 to length[V] do
if flag[V[i]] = FALSE then
count++;
DFS(y);
count++;

V(x) is the list vertices adjacent to x. The flag array is initially filled as FALSE. DFS initially starts with a parameter of an entrance vertex. When the search is finished, variable count will contain the number of moves.

Your task is to count the mathematical expectation of the number of moves one has to do to exit the maze.

Input

The first line determines the number of vertices in the graph n (1 ≤ n ≤ 105). The next n - 1 lines contain pairs of integers ai and bi, which show the existence of an edge between ai and bi vertices (1 ≤ ai, bi ≤ n). It is guaranteed that the given graph is a tree.

Next n lines contain pairs of non-negative numbers xi and yi, which represent the probability of choosing the i-th vertex as an entrance and exit correspondingly. The probabilities to choose vertex i as an entrance and an exit equal  and  correspondingly. The sum of all xi and the sum of all yi are positive and do not exceed 106.

Output

Print the expectation of the number of moves. The absolute or relative error should not exceed 10 - 9.

Example

Input
2
1 2
0 1
1 0
Output
1.00000000000000000000
Input
3
1 2
1 3
1 0
0 2
0 3
Output
2.00000000000000000000
Input
7
1 2
1 3
2 4
2 5
3 6
3 7
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Output
4.04081632653

Note

In the first sample the entrance vertex is always 1 and the exit vertex is always 2.

In the second sample the entrance vertex is always 1 and the exit vertex with the probability of 2/5 will be 2 of with the probability if 3/5 will be 3. The mathematical expectations for the exit vertices 2 and 3 will be equal (symmetrical cases). During the first move one can go to the exit vertex with the probability of 0.5 or to go to a vertex that's not the exit vertex with the probability of 0.5. In the first case the number of moves equals 1, in the second one it equals 3. The total mathematical expectation is counted as 2 / 5 × (1 × 0.5 + 3 × 0.5) + 3 / 5 × (1 × 0.5 + 3 × 0.5)

我们如果把终点T当成树根的话,那么再把S当作起点,路径长度的期望就是 树根T包含S那个儿子的子树大小。

为什么呢?

1.考虑如果一条边在S到T的路径上的话,那么是肯定要经过的,期望就是1;

2.如果一条边不在T到S的路径上,但却在T包含S那个子树里,那么它只有两种可能:被经过2次或者不经过。然后我们再强行带一波数,可以发现两者的概率是相等的(就是我们假设S和边上端点的LCA有p个儿子,那么走包含S那个子树的概率就是 1/p + (p-2)/p * 1/(p-1) +....  = 1/2)

而这两种边数之和(子树中所有边+T到那个儿子的边)正好就是T包含S那个子树的大小,所以我们直接DFS一遍,统计每个点作为终点(树根)的答案即可。

#include<bits/stdc++.h>
#define ll long long
const int maxn=100005;
#define D double
using namespace std;
int n,m,hd[maxn],to[maxn*2],ne[maxn*2],siz[maxn];
D per[maxn],ANS=0,S,T,s[maxn],t[maxn]; void dfs(int x,int fa){
siz[x]=1;
for(int i=hd[x];i;i=ne[i]) if(to[i]!=fa){
dfs(to[i],x);
siz[x]+=siz[to[i]];
s[x]+=s[to[i]];
ANS+=t[x]*s[to[i]]*siz[to[i]];
}
ANS+=t[x]*(S-s[x])*(n-siz[x]);
} int main(){
scanf("%d",&n);
int uu,vv;
for(int i=1;i<n;i++){
scanf("%d%d",&uu,&vv);
to[i]=vv,ne[i]=hd[uu],hd[uu]=i;
to[i+n]=uu,ne[i+n]=hd[vv],hd[vv]=i+n;
} for(int i=1;i<=n;i++){
scanf("%lf%lf",s+i,t+i);
S+=s[i],T+=t[i];
} dfs(1,1); printf("%.20lf\n",ANS/S/T);
return 0;
}

  

Codeforces 123 E Maze的更多相关文章

  1. Codeforces 197D - Infinite Maze

    197D - Infinite Maze 思路:bfs,如果一个点被搜到第二次,那么就是符合要求的. 用vis[i][j].x,vis[i][j].y表示i,j(i,j是取模过后的值)这个点第一次被搜 ...

  2. CodeForces 196B Infinite Maze

    Infinite Maze time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. Codeforces 377 A Maze【DFS】

    题意:给出n*m的矩阵,矩阵由'.'和'#'组成,再给出k,表示需要在'.'处加k堵墙,使得剩下的'.'仍然是连通的 先统计出这个矩阵里面总的点数'.'为sum 因为题目说了一定会有一个解,所以找到一 ...

  4. Codeforces 123E Maze(树形DP+期望)

    [题目链接] http://codeforces.com/problemset/problem/123/E [题目大意] 给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从 ...

  5. Codeforces 377A - Maze

    A. Maze 题目链接:http://codeforces.com/contest/377/problem/A time limit per test 2 seconds memory limit ...

  6. Codeforces Round #222 (Div. 1) A. Maze dfs

    A. Maze 题目连接: http://codeforces.com/contest/377/problem/A Description Pavel loves grid mazes. A grid ...

  7. CodeForces - 123E Maze

    http://codeforces.com/problemset/problem/123/E 题目翻译:(翻译来自: http://www.cogs.pw/cogs/problem/problem.p ...

  8. Codeforces Round #222 (Div. 1) Maze —— dfs(连通块)

    题目链接:http://codeforces.com/problemset/problem/377/A 题解: 有tot个空格(输入时统计),把其中k个空格变为wall,问怎么变才能使得剩下的空格依然 ...

  9. [Codeforces 863C]1-2-3

    Description Ilya is working for the company that constructs robots. Ilya writes programs for enterta ...

随机推荐

  1. [LUOGU] 2820 局域网

    题目背景 某个局域网内有n(n<=100)台计算机,由于搭建局域网时工作人员的疏忽,现在局域网内的连接形成了回路,我们知道如果局域网形成回路那么数据将不停的在回路内传输,造成网络卡的现象.因为连 ...

  2. day18-python之迭代器和生成器

    1.文件处理模式b模式 #!/usr/bin/env python # -*- coding:utf-8 -*- # f=open('test.py','rb',encoding='utf-8') # ...

  3. python基础学习笔记——开发规范

    > 编码 1 2 3 4 5 所有的 Python 脚本文件都应在文件头标上     # -*- coding:utf-8 -*- 用于设置编辑器,默认保存为 utf-8 格式. > 注释 ...

  4. go 本地安装 grpc-go

    https://blog.csdn.net/code_segment/article/details/77461590 https://github.com/grpc/grpc-go git clon ...

  5. log4net.dll配置以及在项目中应用

    1,首先在项目中引用log4net.dll,然后项目中添加一个配置文件log4net.config <?xml version="1.0" encoding="ut ...

  6. python算法-插入排序

    插入排序 一.核心思想:在一个有序的数组中,通过逐一和前面的数进行比较,找到新数的位置. 例子:数组有有一个数21 插入一个3,3<21,因此结果为 3,21 再插入一个34,34>21, ...

  7. Linux之crontab定时任务

    ****crontab简介**** 简而言之呢,crontab就是一个自定义定时器. ****crontab配置文件**** 其一:/var/spool/cron/ 该目录下存放的是每个用户(包括ro ...

  8. Leetcode 377.组合总和IV

    组合总和IV 给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数. 示例: nums = [1, 2, 3] target = 4 所有可能的组合为: (1, 1, 1, ...

  9. nginx的简介和配置文件实例(一)

    此文章配合 nginx配置文件解答    共同分享,了解. 一.nginx服务简介Nginx是一个高性能的HTTP和反向代理服务器 使用 Nginx 前必须了解的事项: 1)Nginx 本身只是一个 ...

  10. [BZOJ2342] [Shoi2011]双倍回文(manacher)

    传送门 manacher...... 先跑一边manacher是必须的 然后枚举双倍回文串的对称轴x 把这个双倍回文串分成4段,w wR w wR 发现,只有当 y <= x + p[x] / ...