Power of Matrix 等比数列求和 矩阵版!
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 49
#define MOD 10000007
#define INF 1000000009
const double eps = 1e-;
//矩阵快速幂
int n, k;
struct Mat
{
int a[MAXN][MAXN];
Mat()
{
memset(a, , sizeof(a));
}
Mat operator *(const Mat& rhs)
{
Mat ret;
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
if (a[i][j])
{
for (int t = ; t < n; t++)
{
ret.a[i][t] = (ret.a[i][t] + a[i][j] * rhs.a[j][t])%;
}
}
}
}
return ret;
}
Mat operator +(const Mat& rhs)
{
Mat ret;
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
ret.a[i][j] += (a[i][j] + rhs.a[i][j])%;
}
}
return ret;
}
};
Mat e;
Mat fpow(const Mat& m, int b)
{
Mat ans, tmp = m;
for (int i = ; i < n; i++)
ans.a[i][i] = ;
while (b != )
{
if (b & )
ans = tmp*ans;
tmp = tmp * tmp;
b >>= ;
}
return ans;
}
Mat sum(const Mat& m, int k)
{
if (k == ) return m;
else if (k % == )
{
return (e + fpow(m, k / )) * sum(m, k / );
}
else if (k % == )
{
Mat tmp = fpow(m, k / + );
return (e + tmp)*sum(m, k / ) + tmp;
}
} int main()
{
while (scanf("%d%d", &n,&k), n)
{
for (int i = ; i < n; i++)
e.a[i][i] = ;
Mat M;
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
scanf("%d", &M.a[i][j]);
M.a[i][j] %= ;
}
}
M = sum(M, k);
for (int i = ; i < n; i++)
{
printf("%d", M.a[i][]);
for (int j = ; j < n; j++)
{
printf("% d", M.a[i][j]);
}
printf("\n");
}
printf("\n");
}
}
Power of Matrix 等比数列求和 矩阵版!的更多相关文章
- Power of Matrix(uva11149+矩阵快速幂)
Power of Matrix Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit St ...
- ZOJ-3774 Power of Fibonacci——等比数列求和&&等价替换
题目 求 $\displaystyle \sum_{i=1}^n F_i^k$,($1 \leq n\leq 10^{18},1 \leq k\leq 10^5$),答案对 $10^9+9$ 取模. ...
- UVA 11149 - Power of Matrix(矩阵乘法)
UVA 11149 - Power of Matrix 题目链接 题意:给定一个n*n的矩阵A和k,求∑kiAi 思路:利用倍增去搞.∑kiAi=(1+Ak/2)∑k/2iAi,不断二分就可以 代码: ...
- UVa 11149 Power of Matrix(倍增法、矩阵快速幂)
题目链接: 传送门 Power of Matrix Time Limit: 3000MS Description 给一个n阶方阵,求A1+A2+A3+......Ak. 思路 A1+A2+. ...
- luogu1397 [NOI2013]矩阵游戏 (等比数列求和)
一个比较显然的等比数列求和,但有一点问题就是n和m巨大.. 考虑到他们是在幂次上出现,所以可以模上P-1(费马小定理) 但是a或c等于1的时候,不能用等比数列求和公式,这时候就要乘n和m,又要变成模P ...
- SPOJ AMR10E Stocks Prediction --二分求和+矩阵快速幂
题意:给一个递推式S(n) = a1*S(n-1)+...+aR*S(n-R),要求S(k)+S(2k)+...+S(nk)的值. 分析:看到n的大小和递推式,容易想到矩阵快速幂.但是如何转化呢? 首 ...
- UVA 11149 Power of Matrix 快速幂
题目链接: http://acm.hust.edu.cn/vjudge/contest/122094#problem/G Power of Matrix Time Limit:3000MSMemory ...
- POJ 1845 (约数和+二分等比数列求和)
题目链接: http://poj.org/problem?id=1845 题目大意:A^B的所有约数和,mod 9901. 解题思路: ①整数唯一分解定理: 一个整数A一定能被分成:A=(P1^K1) ...
- leetcode-Spiral Matrix II 螺旋矩阵2之python大法好,四行就搞定,你敢信?
Spiral Matrix II 螺旋矩阵 Given an integer n, generate a square matrix filled with elements from 1 to n2 ...
随机推荐
- 为什么前后端分离不利于seo
搜索引擎的基础爬虫的原理就是抓取你的url,然后获取你的html源代码并解析. 而你的页面通常用了vue等js的数据绑定机制来展示页面数据,爬虫获取到的html是你的模型页面而不是最终数据的渲染页面, ...
- centos 7 配置php
对于我们的目的而言,安装 Apache 只需要在 CentOS 命令终端敲入这条命令就行了: $ sudo yum install httpd $ sudo systemctl enable http ...
- EditText(7)EditText输入事件监听
EditText.addTextChangedListener(TextWatcher watcher); void initSearch(){ search = (EditText) findVie ...
- 306 Additive Number 加法数
Additive number is a string whose digits can form additive sequence.A valid additive sequence should ...
- 242 Valid Anagram 有效的字母异位词
给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的一个字母异位词.例如,s = "anagram",t = "nagaram",返回 true ...
- LN : leetcode 690 Employee Importance
lc 690 Employee Importance 690 Employee Importance You are given a data structure of employee inform ...
- Redis远程连接
一.打开CMD命令 二.打开Redis客户端安装地址
- 介绍Git的17条基本用法
本文将介绍Git的17条基本用法.本文选自<Python全栈开发实践入门>. 1.初始化Git仓库 Git仓库分为两种类型:一种是存放在服务器上面的裸仓库,里面没有保存文件,只是存放.gi ...
- vt100控制符
vt100控制符是比较古老的字符,基本上的终端都能支持 今天突然来了兴致玩一玩儿 颜色配置 下面是我写的各种背景和字体颜色的搭配演示,挑选一种你喜欢的 echo -en "[背景\字体] & ...
- 并查集(Union Find)的基本实现
概念 并查集是一种树形的数据结构,用来处理一些不交集的合并及查询问题.主要有两个操作: find:确定元素属于哪一个子集. union:将两个子集合并成同一个集合. 所以并查集能够解决网络中节点的连通 ...