给出一个整数数组a(正负数都有),如何找出一个连续子数组(可以一个都不取,那么结果为0),使得其中的和最大?

 
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
 
 

看见这个问题你的第一反应是用什么算法?

(1) 枚举?对,枚举是万能的!枚举什么?子数组的位置!好枚举一个开头位置i,一个结尾位置j>=i,再求a[i..j]之间所有数的和,找出最大的就可以啦。好的,时间复杂度?

(1.1)枚举i,O(n)
(1.2)枚举j,O(n)
(1.3)求和a[i..j],O(n)
 
大概是这样一个计算方法:

for(int i = ; i <= n; i++)
{
for(int j = i; j <= n; j++)
{
int sum = ;
for(int k = i; k <= j; k++)
sum += a[k]; max = Max(max, sum);
}
}
所以是O(n^3), 复杂度太高?降低一下试试看?
(2) 仍然是枚举! 能不能在枚举的同时计算和?
(2.1)枚举i,O(n)
(2. 2)枚举j,O(n) ,这里我们发现a[i..j]的和不是a[i..j – 1]的和加上a[j]么?所以我们在这里当j增加1的时候把a[j]加到之前的结果上不就可以了么?对!所以我们毫不费力地降低了复杂度,得到了一个新地时间复杂度为O(n^2)的更快的算法。
 
大概是这样一段代码:

for(int i = ; i <= n; i++)
{
int sum = ; for(int j = i; j <= n; j++)
{
sum += a[j];
max = Max(max, sum);
}
}
是不是到极限了?远远不止!

(3)分治一下?

我们从中间切开数组,原数组的最大子段和要么是两个子数组的最大子段和(分), 要么是跨越中心分界点的最大子段和(合)。 那么跨越中心分界点的最大子段合怎么计算呢?仍然是枚举! 从中心点往左边找到走到哪里可以得到最大的合,再从中心点往右边检查走到哪里可以得到最大的子段合,加起来就可以了。可见原来问题之所以难,是因为我们不知道子数组从哪里开始,哪里结束,没有“着力点”,有了中心位置这个“着力点”,我们可以很轻松地通过循环线性时间找到最大子段和。
于是算法变成了
(3.1)拆分子数组分别求长度近乎一半的数组的最大子段和sum1, sum2
时间复杂度 2* T(n / 2)
(3.2)从中心点往两边分别分别找到最大的和,找到跨越中心分界点的最大子段和sum3 时间复杂度 O(n)
那么总体时间复杂度是T(n) = 2 * T(n / 2) + O(n) = O(nlogn), 又优化了一大步,不是吗?
还能优化吗?再想想,别放弃!

 
我们在解法(3)里需要一个“着力点”达到O(n)的子问题时间复杂度,又在解法(2)里轻易地用之前的和加上一个新的元素得到现在的和,那么“之前的和”有那么重要么?如果之前的和是负数呢?显然没用了吧?我们要一段负数的和,还不如从当前元素重新开始了吧?

再想想,如果我要选择a[j],那么“之前的和”一定是最大的并且是正的。不然要么我把“之前的和”换成更优,要么我直接从a[j]开始,不是更好么?
动态规划大显身手。我们记录dp[i]表示以a[i]结尾的全部子段中最大的和。我们看一下刚才想到的,我取不取a[i – 1],如果取a[i – 1]则一定是取以a[i – 1]结尾的子段和中最大的一个,所以是dp[i – 1]。 那如果不取dp[i – 1]呢?那么我就只取a[i]孤零零一个好了。注意dp[i]的定义要么一定取a[i]。 那么我要么取a[i – 1]要么不取a[i -1]。 那么那种情况对dp[i]有利? 显然取最大的嘛。所以我们有dp[i] = max(dp[i – 1] + a[i], a[i]) 其实它和dp[i] = max(dp[i – 1] , 0) + a[i]是一样的,意思是说之前能取到的最大和是正的我就要,否则我就不要!初值是什么?初值是dp[1] = a[1],因为前面没的选了。
那么结果是什么?我们要取的最大子段和必然以某个a[i]结尾吧?那么结果就是max(dp[i])了。
这样,我们的时间复杂度是O(n),空间复杂度也是O(n)——因为要记录dp这个数组。
算法达到最优了吗? 好像是!还可以优化!我们注意到dp[i] = max(dp[i - 1], 0) + a[i], 看它只和dp[i – 1]有关,我们为什么要把它全记录下来呢?为了求所有dp[i]的最大值?不,最大值我们也可以求一个比较一个嘛。

我们定义endmax表示以当前元素结尾的最大子段和,当加入a[i]时,我们有endmax’ = max(endmax, 0) + a[i], 然后再顺便记录一下最大值就好了。
 
伪代码如下;(数组下标从1开始)
 
endmax = answer = a[]
for i = to n do
endmax = max(endmax, ) + a[i]
answer = max(answer, endmax)
endfor
 
时间复杂度?O(n)!空间复杂度?O(1)! 简单吧?我们不仅优化了时间复杂度和空间复杂度,还使代码变得简单明了,更不容易出错。
老生常谈的问题来了。我们如何找到一个这样的子段?请看上面的为伪代码endmax = max(endmax, 0) + a[i], 对于endmax它对应的子段的结尾显然是a[i],我们怎么知道这个子段的开头呢? 就看它有没有被更新。也就是说如果endmax’ = endmax + a[i]则对应子段的开头就是之前的子段的开头。否则,显然endmax开头和结尾都是a[i]了,让我们来改一下伪代码:
 
start =
answerstart = asnwerend =
endmax = answer = a[]
for end = to n do
if endmax > then
endmax += a[end]
else
endmax = a[end]
start = end
endif
if endmax > answer then
answer = endmax
answerstart = start
answerend = end
endif
endfor

这里我们直接用end作为循环变量,通过更新与否决定start是否改变。

总结:通过不断优化,我们得到了一个时间复杂度为 O(n),空间复杂度为O(1)的简单的动态规划算法。动态规划,就这么简单!优化无止境!
题解:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
long long n,a[],dp,answer;
int main()
{
cin>>n;
for(int i=;i<=n;i++) cin>>a[i];
dp=answer=a[];
for(int i=;i<=n;i++){
dp=max(dp,0LL)+a[i];
answer=max(dp,answer);
}
cout<<answer;
}

如果对你有所帮助,别忘了加好评哦;么么哒!!下次见!88

- > 动规讲解基础讲解四——最大子段和问题的更多相关文章

  1. - > 动规讲解基础讲解一——01背包(模板)

    作为动态规划的基础,01背包的思想在许多动规问题中会经常出现,so,熟练的掌握01背包的思路是极其重要的: 有n件物品,第i件物品(I = 1,2,3…n)的价值是vi, 重量是wi,我们有一个能承重 ...

  2. - > 动规讲解基础讲解四——矩阵取数

    给定一个m行n列的矩阵,矩阵每个元素是一个正整数,你现在在左上角(第一行第一列),你需要走到右下角(第m行,第n列),每次只能朝右或者下走到相邻的位置,不能走出矩阵.走过的数的总和作为你的得分,求最大 ...

  3. - > 动规讲解基础讲解五——最长公共子序列问题

    一些概念: (1)子序列: 一个序列A = a1,a2,……an,中任意删除若干项,剩余的序列叫做A的一个子序列.也可以认为是从序列A按原顺序保留任意若干项得到的序列. 例如:   对序列 1,3,5 ...

  4. - > 动规讲解基础讲解六——编辑距离问题

    给定两个字符串S和T,对于T我们允许三种操作: (1) 在任意位置添加任意字符(2) 删除存在的任意字符(3) 修改任意字符 问最少操作多少次可以把字符串T变成S?  例如: S=  “ABCF”   ...

  5. - > 动规讲解基础讲解八——正整数分组

    将一堆正整数分为2组,要求2组的和相差最小.例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. 整数个数n<=100,所有整数的和<=1 ...

  6. - > 动规讲解基础讲解七——最长单增子序列

    (LIS Longest Increasing Subsequence)给定一个数列,从中删掉任意若干项剩余的序列叫做它的一个子序列,求它的最长的子序列,满足子序列中的元素是单调递增的. 例如给定序列 ...

  7. - > 动规讲解基础讲解三——混合背包(背包模板)

    将01背包,完全背包,和多重完全背包问题结合起来,那么就是混合三种背的问题 根据三种背包的思想,那么可以得到混合三种背包的问题可以这样子求解 for(int i=1; i<=N; ++i) if ...

  8. 第二十四节:Java语言基础-讲解数组的综合应用

    数组的综合应用 // 打印数组 public static void printArray(int[] arr) { for(int x=0;x<arr.length;x++) { if(x!= ...

  9. Verilog语法基础讲解之参数化设计

    Verilog语法基础讲解之参数化设计   在Verilog语法中,可以实现参数化设计.所谓参数化设计,就是在一个功能模块中,对于一个常量,其值在不同的应用场合需要设置为不同的置,则将此值在设计时使用 ...

随机推荐

  1. GIT学习之路第一天 简介及其安装

    本文参考廖雪峰老师的博客进行总结,完整学习请转廖雪峰博客 Git是什么? Git是目前世界上最先进的分布式版本控制系统(没有之一). Git有什么特点?简单来说就是:高端大气上档次! 那什么是版本控制 ...

  2. 295 Find Median from Data Stream 数据流的中位数

    中位数是排序后列表的中间值.如果列表的大小是偶数,则没有中间值,此时中位数是中间两个数的平均值.示例:[2,3,4] , 中位数是 3[2,3], 中位数是 (2 + 3) / 2 = 2.5设计一个 ...

  3. 257 Binary Tree Paths 二叉树的所有路径

    给定一个二叉树,返回从根节点到叶节点的所有路径.例如,给定以下二叉树:   1 /   \2     3 \  5所有根到叶路径是:["1->2->5", " ...

  4. Knockout应用开发指南(完整版) 目录索引(转)

    使用Knockout有一段时间了(确切的说从MIX11大会宣传该JavaScript类库以来,我们就在使用,目前已经在正式的asp.net MVC项目中使用),Knockout使用js代码达到双向绑定 ...

  5. C# 调用带有输出参数的分页存储过程

    一.创建带有输出参数的分页存储过程 use StudentMISDB go select * from Course alter table Course go --update Course set ...

  6. DIV水平 垂直居中CSS

    /*实现一.原理:要让div等块级元素水平和垂直居中,必需知道该div等块级元素的宽度和高度,然后设置位置为绝对位置,距离页面窗口左边框和上边框的距离设置为50%,这个50%就是指页面窗口的宽度和高度 ...

  7. 使用脚本快速线程转储及列出高cpu线程

    jstack `ps -ef | grep java | grep bocai.jar | awk '{print $2}'` > cpu_high.logtop -b -n1 -Hp `ps ...

  8. JavaScript判断

    if...else: if...else语句是在指定的条件成立时执行的代码,在条件不成立时执行else后的代码. 语法: if(条件) {条件成立时执行的代码 }else{ 条件不成立的时执行的代码} ...

  9. (转) 淘淘商城系列——Redis集群的搭建

    http://blog.csdn.net/yerenyuan_pku/article/details/72860432 本文我将带领大家如何搭建Redis集群.首先说一下,为何要搭建Redis集群.R ...

  10. POJ_1088_(dp)(记忆化搜索)

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 95792   Accepted: 36322 Description ...