[HEOI2015]兔子与樱花

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 1320  Solved: 762
[Submit][Status][Discuss]

Description

很久很久之前,森林里住着一群兔子。有一天,兔子们突然决定要去看樱花。兔子们所在森林里的樱花树很特殊。樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它看成一个有根树结构,其中0号节点是根节点。这个树的每个节点上都会有一些樱花,其中第i个节点有c_i朵樱花。樱花树的每一个节点都有最大的载重m,对于每一个节点i,它的儿子节点的个数和i节点上樱花个数之和不能超过m,即son(i) + c_i <= m,其中son(i)表示i的儿子的个数,如果i为叶子节点,则son(i) = 0

现在兔子们觉得樱花树上节点太多,希望去掉一些节点。当一个节点被去掉之后,这个节点上的樱花和它的儿子节点都被连到删掉节点的父节点上。如果父节点也被删除,那么就会继续向上连接,直到第一个没有被删除的节点为止。
现在兔子们希望计算在不违背最大载重的情况下,最多能删除多少节点。
注意根节点不能被删除,被删除的节点不被计入载重。

Input

第一行输入两个正整数,n和m分别表示节点个数和最大载重

第二行n个整数c_i,表示第i个节点上的樱花个数
接下来n行,每行第一个数k_i表示这个节点的儿子个数,接下来k_i个整数表示这个节点儿子的编号

Output

一行一个整数,表示最多能删除多少节点。

Sample Input

10 4
0 2 2 2 4 1 0 4 1 1
3 6 2 3
1 9
1 8
1 1
0
0
2 7 4
0
1 5
0

Sample Output

4

HINT

对于100%的数据,1 <= n <= 2000000, 1 <= m <= 100000, 0 <= c_i <= 1000

数据保证初始时,每个节点樱花数与儿子节点个数之和大于0且不超过m
 

Source

题解:

   树形贪心。对于任意一个节点,它当前的权值为c[i]+son[i]。

   假设我们删除了它的某一个儿子节点j,则权值增加c[j]+son[j]-1。

   那么显然,我们在删除节点的时候,应该从权值最小的到最大的依次进行,直到当前节点的权值已经超过限重。

  1. #include<cstring>
  2. #include<cmath>
  3. #include<algorithm>
  4. #include<iostream>
  5. #include<cstdio>
  6. #include<vector>
  7.  
  8. #define N 2000007
  9. #define ll long long
  10. using namespace std;
  11. inline int read()
  12. {
  13. int x=,f=;char ch=getchar();
  14. while(ch>''||ch<''){if (ch=='-') f=-;ch=getchar();}
  15. while(ch<=''&&ch>=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
  16. return x*f;
  17. }
  18.  
  19. int n,m,ans;
  20. int c[N];
  21. vector<int>e[N];
  22.  
  23. bool cmp(int a,int b){return c[a]<c[b];}
  24. void dfs(int x)
  25. {
  26. for(int i=;i<e[x].size();i++)
  27. dfs(e[x][i]);
  28. sort(e[x].begin(),e[x].end(),cmp);
  29. c[x]+=e[x].size();
  30. for(int i=;i<e[x].size();i++)
  31. {
  32. int t=c[e[x][i]];
  33. if(c[x]+t-<=m)
  34. {
  35. c[x]+=t-;
  36. ans++;
  37. }
  38. }
  39. }
  40. int main()
  41. {
  42. n=read();m=read();
  43. for(int i=;i<n;i++)
  44. c[i]=read();
  45. for(int i=,x,y;i<n;i++)
  46. {
  47. x=read();
  48. while(x--)
  49. {
  50. y=read();
  51. e[i].push_back(y);
  52. }
  53. }
  54. dfs(),printf("%d\n",ans);
  55. }

bzoj4027 [HEOI2015]兔子与樱花 树上贪心的更多相关文章

  1. [bzoj4027][HEOI2015]兔子与樱花_贪心_树形dp

    兔子与樱花 bzoj-4027 HEOI-2015 题目大意:每个点有c[i]朵樱花,有一个称重m, son[i]+c[i]<=m.如果删除一个节点,这个节点的樱花或移动到它的祖先中深度最大的, ...

  2. BZOJ4027 HEOI2015兔子与樱花(贪心)

    首先显然地如果某个点超过了最大负载,删掉它仍然是不合法的.删除某个点当前只会对其父亲产生影响,同一个节点的儿子显然应该按代价从小到大删.考虑如果删掉某个点之后他的父亲不能再删了,我们损失了父亲这个点, ...

  3. 【BZOJ4027】兔子与樱花(贪心)

    [BZOJ4027]兔子与樱花(贪心) 题面 BZOJ 洛谷 题解 很直观的一个感受就是对于每个节点, 考虑它的所有儿子,如果能删就删. 那么我们把所有儿子按照给删去后给父亲\(c[i]\)的贡献从小 ...

  4. BZOJ4027: [HEOI2015]兔子与樱花 贪心

    觉得是贪心,但是一开始不太肯定...然后就A了 一个点对它的父亲的贡献就是自己的权值加儿子的个数 #include<bits/stdc++.h> using namespace std; ...

  5. 【BZOJ 4027】 4027: [HEOI2015]兔子与樱花 (贪心)

    4027: [HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号 ...

  6. [HEOI2015]兔子与樱花(贪心)

    [HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由\(n\)个树枝分叉点组成,编号从\ ...

  7. BZOJ 4027: [HEOI2015]兔子与樱花 树上dp

    4027: [HEOI2015]兔子与樱花 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  8. [bzoj4027][HEOI2015][兔子与樱花] (树形dp思想+玄学贪心)

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  9. [BZOJ4027][HEOI2015] 兔子与樱花

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

随机推荐

  1. iOS面试题之内存管理

    本文围绕内存管理的几种方法展开叙述. 1.内存管理是什么? 内存管理,就是对内存资源进行优化. 2.内存管理的三种方法? Objective-C的内存管理主要有三种方式ARC(自动内存计数).MRC( ...

  2. 获取第三方软件的包名、入口Activity的类名

    要启动指定的第三方软件,需要知道第三方软件的包名.类名. 获取第三方软件包名.类名的两种方法: 1.使用aapt aapt是sdk自带一个工具,在 Sdk\builds-tools 目录下 .如果没有 ...

  3. Android获取声音长度

    代码 MediaMetadataRetriever metaRetriever = new MediaMetadataRetriever(); metaRetriever.setDataSource( ...

  4. 打开centos直接进入文本模式命令行

    2.打开/etc/inittab 文件 #vim /etc/inittab3.在默认的 run level 设置中,可以看到第一行书写如:id:5:initdefault:(默认的 run level ...

  5. edquota - 编辑用户配额

    SYNOPSIS(总览) edquota [ -p proto-username ] [ -u | -g ] username... edquota [ -u | -g ] -t DESCRIPTIO ...

  6. DROP DOMAIN - 删除一个用户定义的域

    SYNOPSIS DROP DOMAIN name [, ...] [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP DOMAIN 将从系统表中删除一个用户域. 只 ...

  7. 朴素贝叶斯法(naive Bayes)

    <统计学习方法>(第二版)第4章 4 朴素贝叶斯法 生成模型 4.1 学习与分类 基于特征条件独立假设学习输入输出的联合概率分布 基于联合概率分布,利用贝叶斯定理求出后验概率最大的输出 条 ...

  8. Redux 和 mobx的区别

    Redux: Redux将数据保存在单一store中,Mobx将数据保存在分散的多个store中 Redux需要手动处理变化后的操作,Mobx使用observable保存数据,数据变化后自动处理响应的 ...

  9. JDK 5 ~ 11 新特性倾情整理

    为了大家对JDK有一个全面的了解,下面我为大家整理了JDK5~11的所有关键新特性! 先看一下JDK的版本迭代图: 注:   OpenJDK和JDK区别  GPL协议通用性公开许可证(General ...

  10. Java BufferedReader文件读取 带缓冲区的字符流

    package org.jimmy.autosearch2019.test; import java.io.BufferedReader; import java.io.FileInputStream ...