(Problem 28)Number spiral diagonals
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows:
21 22 23 24 25
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13
It can be verified that the sum of the numbers on the diagonals is 101.
What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way?
原题大意:
从数字1开始向右顺时针方向移动,可以得到如下的5×5的螺旋:
21 22 23 24 25
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13
可以算出对角线上数字之和是101. 1001×1001的螺旋中对角线上数字之和是多少?
//(Problem 28)Number spiral diagonals
// Completed on Thu, 25 Jul 2013, 14:31
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/ #include<stdio.h>
void countSum()
{
int i=;
int sum=;
int n=(+)/-;
while(n--)
{
int t=i*i;
sum+=(*t-(i-)*);
i=i+;
}
printf("%d\n",sum);
} int main()
{
countSum();
return ;
}
Answer:
|
669171001 |
(Problem 28)Number spiral diagonals的更多相关文章
- (Problem 17)Number letter counts
If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 49)Prime permutations
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...
- (Problem 37)Truncatable primes
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remo ...
- (Problem 36)Double-base palindromes
The decimal number, 585 = 10010010012(binary), is palindromic in both bases. Find the sum of all num ...
随机推荐
- JSP打印九九乘法表
##index.jsp: <%@ page language="java" import="java.util.*" pageEncoding=" ...
- 追踪神秘的成都Uber:月入2万元是现实还是传说
4月6日,一个视频在网上疯转——在上海,明星佟大为驾驶着售价近100万元的特斯拉电动汽车,作为一名Uber的司机满市转悠着拉客. Uber——优步,如果你不知道这个词,那就OUT了.就是这样的一款软件 ...
- Linux中环境变量到底写在哪个文件中?解析login shell 和 no-login shell
login shell:取得bash 时需要完整的登入流程,就称为login shell.举例来说,同tty1~tty6登入时, 需要输入用户名和密码,此时取得的bash就称为login shell ...
- JavaScipt实现倒计时方法总结
JavaScript中提供了两种实现计时.延时的方法,分别如下: 一. t = setTimeout(“function()", millisecond) 与 clearTimeout(t) ...
- 关于typedef之四种用途 和 两个陷进
typedef用来声明一个别名,typedef后面的语法,是一个声明.本来笔者以为这里不会产生什么误解的,但结果却出乎意料,产生误解的人 不在少数.罪魁祸首又是那些害人的教材.在这些教材中介绍type ...
- WCF 出现无法理解Soap Action问题?
在使用wcf部署到asp.net上时,遇到了,“无法理解soap Action 问题,”最简单的解决办法是更换NET framwork 高本版的框架. 不过不更换net framwork 框架,能否解 ...
- jQuery的hover()方法(笔记)
因为mouseover和mouseout经常一起写,所以出现了hover() hover(function(){},function(){});第一个参数为鼠标移入运行的函数,第二个为鼠标离开运行的函 ...
- BootStrap 智能表单系列 八 表单配置json详解
本章属于该系列的高级部分,将介绍表单中一些列的配置 1.config列的配置: 主要用于控制布局 :config:{autoLayout:true|'1,2,2,4'} true:根据配置项最里层的数 ...
- vs2010更改默认环境设置
今天刚刚装vs2010手欠点击了新建团队项目,在百度上各种查找说让我去 visual studio tools的命令提示中进行 devenv命令行修改 ResetString但是没找到我设置文件的路径 ...
- Laravel5 学习与使用(一)
2015-07-04 (1) 安装Laravel框架 ① 安装前的准备工作 使用Apache24 + PHP 5.6 + MySQL 开发环境完成PHP网站开发,所以Laravel的安装是建立在以上 ...