(14.10.28改)

本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下。

不过我还不会插公式……

http://www.lydsy.com/JudgeOnline/problem.php?id=3561

想想还是要把代码放一下的,不然可能一辈子都不会写了= =

为什么那么像FancyCoder写的呢……因为这题本来就是他教我哒……读入优化快速筛甚至快速幂的模板都是他的= =

额Mobius反演系列问题的入门也是看Jcvb大爷blog学的……

= =

简要说下,设F(d,k)为正整数d次幂的前K项和。

然后化成∑(D=1...n)∑(d|D)d^d*μ(D/d)*F(d,n/d)*F(d,m/d)……

发现能预处理出F(d,n/d)和F(d,m/d)就好了……

然后我对杜教多项式求和的课件进行了艰苦卓绝的复习(学习)……当然失败了。

最后看Fancy代码……

暴力!

居然是暴力!

妈蛋……

简要的说……就是裸的不能裸暴力啊泥煤,预处理时间复杂度O(∑(n/d))=O(nlogn)。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define rep(i,j,n) for(i=j;i<=n;i++)
template<class T> inline void read(T&x){char c;for(c=getchar();c<'0'||c>'9';c=getchar());for(x=0;c>='0'&&c<='9';c=getchar())x=x*10+c-'0';};
typedef long long ll;
const int N=500000;
const int mod=1000000007;
ll i,j,k,l,tt,d2,res,ans,d;
int P,Q,n,m;
ll s[N+10],t[N+10];
ll pow(ll a){ll ans=1,b=a;for(a%=mod;b;b>>=1,a=a*a%mod)if(b&1)ans=ans*a%mod;return ans;}
  
bool pd[N+1];int u[N+1],p[N/5+1];
void pre(){
    pd[1]=1;u[1]=1;
    rep(i,2,N){
        if(!pd[i]){p[++p[0]]=i;u[i]=-1;}
        for(int j=1,mul;j<=p[0]&&(mul=i*p[j])<=N;j++){
            pd[mul]=1;
            if(i%p[j]==0){u[mul]=0;break;}
            u[mul]=-u[i];
        }
    }
}
int main()
{
    read(n);read(m);
    if(n>m)swap(n,m);
    pre();
    rep(i,1,m)t[i]=1;
    rep(d,1,n){
    Q=m/d;
        rep(i,1,Q)t[i]=t[i]*i%mod;
        rep(i,1,Q)s[i]=(s[i-1]+t[i])%mod;
        res=0;P=n/d;
        rep(d2,1,P)if(u[d2]){
            tt=t[d2]*t[d2]%mod*s[P/d2]%mod*s[Q/d2]%mod;
            res+=tt*u[d2];
        }
        res%=mod;
        ans=(ans+res*pow(d))%mod;
    }
    printf("%lld\n",ans);
    return 0;
}

[BZOJ3561] DZY Loves Math VI的更多相关文章

  1. BZOJ3561 DZY Loves Math VI 数论 快速幂 莫比乌斯反演

    原文链接http://www.cnblogs.com/zhouzhendong/p/8116330.html UPD(2018-03-26):回来重新学数论啦.之前的博客版面放在更新之后的后面. 题目 ...

  2. BZOJ3561 DZY Loves Math VI 莫比乌斯反演

    传送门 看到\(gcd\)相关先推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^M (lcm(i ...

  3. BZOJ3561 DZY Loves Math VI 【莫比乌斯反演】

    题目 给定正整数n,m.求 输入格式 一行两个整数n,m. 输出格式 一个整数,为答案模1000000007后的值. 输入样例 5 4 输出样例 424 提示 数据规模: 1<=n,m<= ...

  4. 【BZOJ3561】DZY Loves Math VI (数论)

    [BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...

  5. BZOJ 3561 DZY Loves Math VI

    BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...

  6. 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)

    3561: DZY Loves Math VI Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 205  Solved: 141 Description ...

  7. 【bzoj3561】DZY Loves Math VI 莫比乌斯反演

    题目描述 给定正整数n,m.求   输入 一行两个整数n,m. 输出 一个整数,为答案模1000000007后的值. 样例输入 5 4 样例输出 424 题解 莫比乌斯反演 (为了方便,以下公式默认$ ...

  8. 【BZOJ】3561: DZY Loves Math VI

    题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)^{gcd(i, j)}\)(\(n, m<=500000\)) 分析 很显然要死推莫比乌斯 题解 设\ ...

  9. ●BZOJ 3561 DZY Loves Math VI

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3561 题解: 莫比乌斯反演 $$\begin{aligned}ANS&=\sum_{ ...

随机推荐

  1. scrapy1.1入门用例简介-2

    写一个小的scrapy project,爬取相关网页内容并保存为.json文件 0.创建project,genspider等. 1.修改items.py,内容如下: 2.修改dmoz.py,内容如下: ...

  2. Windows编程中的若干难点 - Windows程序设计(SDK)007

    Windows编程中的若干难点 让编程改变世界 Change the world by program 一个窗口的生与死 我记得有童鞋会问:如果我的程序需要在关闭前让用户判断是否确定要关闭窗口,我应该 ...

  3. 如何进行fragment中的来回切换?

    本文选自StackOverflow(简称:SOF)精选问答汇总系列文章之一,本系列文章将为读者分享国外最优质的精彩问与答,供读者学习和了解国外最新技术,本文为大家讲解如何进行fragment中的来回切 ...

  4. ECMAScript 发展历史

    参考文献:https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Language_Resources

  5. iOS 操作系统架构

    Mac OS 和 iOS 操作系统架构 做iOS开发已经半年多了,但是感觉对iOS开发的理解却还只停留在表面,昨天刚把两个项目结了,今天打算学了一下iOS系统的架构,以便于更好的理解和开发. 首先看一 ...

  6. 【转】锋狂百科:手机也能接外设 OTG技术详解

    原文网址:http://www.gfan.com/review/2014030346245.html 说到USB数据接口,相信大家并不陌生,在日常使用各类数码产品时我们几乎都会用到它.例如最常用的U盘 ...

  7. C# 同步/并发队列ConcurrentQueue (表示线程安全的先进先出 (FIFO) 集合)

    http://msdn.microsoft.com/zh-cn/library/dd267265(v=vs.110).aspx static void Main(string[] args) { // ...

  8. iOS - UITableViewCell Custom Selection Style Color

    Customize UITextView selection color in UITableView Link : http://derekneely.com/2010/01/uitableview ...

  9. 今天在写powershell脚本中犯的两个错误

    可能是因为牙痛没睡好,今天老是犯错,还是脚本写错,特别难调. 第一个错误: powershell脚本里面,函数与函数互相调用的传参.其实就像调用普通的cmdlet一样的写法,应该这么写: Add-Sc ...

  10. javascript 实现分享功能

    1.面向过程分享 <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...