没什么好说的...

---------------------------------------------------------------------

#include<cstdio>
#include<cmath>
#include<map>
 
using namespace std;
 
typedef long long ll;
 
int MOD;
 
void gcd(int a, int b, int& d, int& x, int& y) {
if(!b) {
d = a;
x = 1;
y = 0;
} else {
gcd(b, a % b, d, y, x);
y -= x * (a / b);
}
}
 
//x^t % MOD
int power(int x, int t) {
int ret = 1;
for(; t; t >>= 1) {
if(t & 1) ret = ll(x) * ret % MOD;
x = ll(x) * x % MOD;
}
return ret;
}
 
//a^x = b(mod MOD)
int BSGS(int a, int b) {
if(a % MOD == 0) return -1;
int m = sqrt(MOD + 0.5), e = 1, v = power(a, MOD - m - 1);
map<int, int> x;
x[1] = 0;
for(int i = 1; i < m; i++) {
e = ll(e) * a % MOD;
if(!x.count(e)) x[e] = i;
}
for(int i = 0; i < m; i++) {
if(x.count(b)) return i * m + x[b];
b = ll(b) * v % MOD;
}
return -1;
}
 
int main() {
int T, K; scanf("%d%d", &T, &K);
while(T--) {
int a, b;
scanf("%d%d%d", &a, &b, &MOD);
if(K == 1)
   printf("%d\n", power(a, b));
else if(K == 2) {
int d, x, y;
gcd(a, MOD, d, x, y);
if(b % d != 0) puts("Orz, I cannot find x!");
else
printf("%d\n", (int) ((ll(x) * b / d % MOD + MOD) % MOD));
} else if(K == 3) {
int t = BSGS(a, b);
if(~t) printf("%d\n", t);
else 
   puts("Orz, I cannot find x!");
}
}
return 0;
}

---------------------------------------------------------------------

2242: [SDOI2011]计算器

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 2111  Solved: 825
[Submit][Status][Discuss]

Description

你被要求设计一个计算器完成以下三项任务:
1、给定y,z,p,计算Y^Z Mod P 的值;
2、给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数;
3、给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数。

Input

输入包含多组数据。

第一行包含两个正整数T,K分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同)。
以下行每行包含三个正整数y,z,p,描述一个询问。

Output

对于每个询问,输出一行答案。对于询问类型2和3,如果不存在满足条件的,则输出“Orz, I cannot find x!”,注意逗号与“I”之间有一个空格。

Sample Input

【样例输入1】
3 1
2 1 3
2 2 3
2 3 3
【样例输入2】
3 2
2 1 3
2 2 3
2 3 3
【数据规模和约定】
对于100%的数据,1<=y,z,p<=10^9,为质数,1<=T<=10。

Sample Output

【样例输出1】
2
1
2
【样例输出2】
2
1
0

HINT

Source

BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )的更多相关文章

  1. bzoj 2242 [SDOI2011]计算器 快速幂+扩展欧几里得+BSGS

    1:快速幂  2:exgcd  3:exbsgs,题里说是素数,但我打的普通bsgs就wa,exbsgs就A了...... (map就是慢)..... #include<cstdio> # ...

  2. BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]

    2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...

  3. BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS

    BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS 题意: 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p, ...

  4. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  5. bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】

    第一问快速幂板子 第二问把式子转化为\( xy\equiv Z(mod P)\rightarrow xy+bP=z \),然后扩展欧几里得 第三问BSGS板子 #include<iostream ...

  6. BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2242 [题目大意] 给出T和K 对于K=1,计算 Y^Z Mod P 的值 对于K=2 ...

  7. BZOJ 2242 [SDOI2011]计算器 ——EXGCD/快速幂/BSGS

    三合一的题目. exgcd不解释,快速幂不解释. BSGS采用了一种不用写EXGCD的方法,写起来感觉好了很多. 比较坑,没给BSGS的样例(LAJI) #include <map> #i ...

  8. BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)

    同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...

  9. BZOJ 2242 [SDOI2011]计算器 BSGS+高速幂+EXGCD

    题意:id=2242">链接 方法: BSGS+高速幂+EXGCD 解析: BSGS- 题解同上.. 代码: #include <cmath> #include <c ...

随机推荐

  1. C++对象模型6--对象模型对数据访问的影响

    如何访问成员? 前面介绍了C++对象模型,下面介绍C++对象模型的对访问成员的影响.其实清楚了C++对象模型,就清楚了成员访问机制.下面分别针对数据成员和函数成员是如何访问到的,给出一个大致介绍. 对 ...

  2. 创建Xml的将但方法和向Xml中添加数据

    </SendUserId>// ::</DateTime></AcceptUserId>       <AcceptUserId></Accept ...

  3. jvm 调优 工具

    1.用于打开运行中的jvm进程的gc 监控日志以及查看相关参数设置:jinfo 2.其它工具如:jps.jstack.jstat.jmap

  4. Snap.svg中transform旋转值的“r+数组”表现形式

    Snap.svg中transform的值还可以写为类似以下这种形式: transform:'r'+[100,[50,50]]; 这种写法的意思是,让元素以(50,50)为旋转中心点,然后旋转100度. ...

  5. JS的单例模式

    维基百科对单例模式的介绍如下: 在应用单例模式时,生成单例的类必须保证只有一个实例的存在,很多时候整个系统只需要拥有一个全局对象,才有利于协调系统整体的行为.比如在整个系统的配置文件中,配置数据有一个 ...

  6. IOS 学习笔记(5) 控件 文本视图(UITextView)的使用方法

    相对于UILabell所支持的较短文本内容,UITextView对于长文本的支持更好.UITextView能够以滚动的方式全部浏览到长文本,并且就像UILabel那样,从ISO6,他也提供了对NSAt ...

  7. Object-c KVC的使用和举例

    如果我们的对象需要使用KVC,必须符合object-c的非正式协议NSKeyValueCoding.我们可以简单的来理解KVC,即所有符合KVC机制的对象都看成一个字典(NSDictionary),对 ...

  8. IT项目经理

    项目经理是具体项目工作的管理者,他们在工作中不断提升自己的领导才华,同时该职业又是一个权利与责任并存的职业, 他们主要对项目进行背景调查,收集整理项目相关资料,进行需求策划,撰写项目调查报告和信息综述 ...

  9. CreateFile,ReadFile等API详解(或者说MSDN的翻译)

    一.*****CreateFile***** 这个函数可以创建或打开一个对象的句柄,凭借此句柄就可以控制这些对象:控制台对象.通信资源对象.目录对象(只能打开).磁盘设备对象.文件对象.邮槽对象.管道 ...

  10. 基于Visual C++2013拆解世界五百强面试题--题16-进制分析

    清写出下列代码的输出内容 #include <stdio.h> int main() { int a = -1, b = -12, c = -123, d = -1234; printf( ...