虽说是IOI'95,但是也是挺水的..for 第一问,n最大为50,所以可以直接枚举起点和终点之外的所有点,然后dfs判断是否连通;for 第二问,易知答案一定是第一问的子集,所以从第一问中的答案中枚举,也是用dfs判断。

----------------------------------------------------------------------

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#define rep(i,r) for(int i=0;i<r;i++)
#define clr(x,c) memset(x,c,sizeof(x))
using namespace std;
const int maxn=50+5;
int n=0;
int vis[maxn];
vector<int> g[maxn];
void read() {    
    for(;;) {
        int t,pd=0;
        g[n].clear();
        while(scanf("%d",&t) && t!=-2) {
            if(t==-1) { pd=1; break; }
            g[n].push_back(t);
        }
        if(pd) break;    
        n++;
    }
}
    
int dfs(int i) {
    vis[i]=1;
    rep(j,g[i].size()) {
        int t=g[i][j];
        if(t==n-1) return 1;
        if(vis[t]) continue;
        if(dfs(t)) return 1;
    }
    return 0;
}
void DFS(int i) {
    vis[i]=1;
    rep(j,g[i].size()) {
        int t=g[i][j];
        if(vis[t]) continue;
        DFS(t);
    }
}
        
int dfsJudge(int i) {
    vis[i]=2;
    rep(j,g[i].size()) {
        int t=g[i][j];
        if(vis[t]==1) return 1;
        if(vis[t]) continue;
        if(dfsJudge(t)) return 1;
    }
    return 0;
}
void work() {
    
    vector<int> ans;
    ans.clear();
    for(int i=1;i<n-1;i++) {
        clr(vis,0);
        vis[i]=1;
        if(!dfs(0)) ans.push_back(i);
    }
        
    cout<<ans.size();
    rep(i,ans.size()) cout<<' '<<ans[i];
    cout<<endl;
    
    vector<int> ans2;
    ans2.clear();
    rep(i,ans.size()) {
         clr(vis,0);
         vis[ans[i]]=2;
         DFS(0);
         if(!dfsJudge(ans[i])) ans2.push_back(ans[i]);
    }
    
    printf("%d",ans2.size());
    rep(i,ans2.size()) printf(" %d",ans2[i]);
    cout<<endl;
}
int main()
{
    freopen("race3.in","r",stdin);
    freopen("race3.out","w",stdout);
    
    read();
    
    work();
        
    
    return 0;
}

----------------------------------------------------------------------

Street Race
IOI'95

Figure 1 gives an example of a course for a street race. You see some points, labeled from 0 to N (here, N=9), and some arrows connecting them. Point 0 is the start of the race; point N is the finish. The arrows represent one-way streets. The participants of the race move from point to point via the streets, in the direction of the arrows only. At each point, a participant may choose any outgoing arrow.

 
Figure 1: A street course with 10 points

A well-formed course has the following properties:

  • Every point in the course can be reached from the start.
  • The finish can be reached from each point in the course.
  • The finish has no outgoing arrows.

A participant does not have to visit every point of the course to reach the finish. Some points, however, are unavoidable. In the example, these are points 0, 3, 6, and 9. Given a well-formed course, your program must determine the set of unavoidable points that all participants have to visit, excluding start and finish.

Suppose the race has to be held on two consecutive days. For that purpose the course has to be split into two courses, one for each day. On the first day, the start is at point 0 and the finish at some `splitting point'. On the second day, the start is at this splitting point and the finish is at point N. Given a well-formed course, your program must also determine the set of splitting points. A point S is a splitting point for the well-formed course C if S differs from the star t and the finish of C, and the course can be split into two well-formed courses that (1) have no common arrows and (2) have S as their only common point, with S appearing as the finish of one and the start of the other. In the example, only point 3 is a splitting point.

PROGRAM NAME: race3

INPUT FORMAT

The input file contains a well-formed course with at most 50 points and at most 100 arrows. There are N+2 lines in the file. The first N+1 lines contain the endpoints of the arrows that leave from the points 0 through N respectively. Each of these lines ends with the number -2. The last line contains only the number -1.

SAMPLE INPUT (file race3.in)

1 2 -2
3 -2
3 -2
5 4 -2
6 4 -2
6 -2
7 8 -2
9 -2
5 9 -2
-2
-1

OUTPUT FORMAT

Your program should write two lines. The first line should contain the number of unavoidable points in the input course, followed by the labels of these points, in ascending order. The second line should contain the number of splitting points of the input course, followed by the labels of all these points, in ascending order.

SAMPLE OUTPUT (file race3.out)

2 3 6
1 3

USACO Section 4.3 Street Race(图的连通性+枚举)的更多相关文章

  1. USACO 4.3 Street Race

    Street RaceIOI'95 Figure 1 gives an example of a course for a street race. You see some points, labe ...

  2. USACO Section 4

    前言 好久没更新这个系列了,最近闲的无聊写一下.有两题搜索懒得写了. P2737 [USACO4.1]麦香牛块Beef McNuggets https://www.luogu.com.cn/probl ...

  3. 数据结构-图-Java实现:有向图 图存储(邻接矩阵),最小生成树,广度深度遍历,图的连通性,最短路径1

    import java.util.ArrayList; import java.util.List; // 模块E public class AdjMatrixGraph<E> { pro ...

  4. Victoria的舞会2——图的连通性及连通分量

    [Vijos1022]]Victoria的舞会2 Description Victoria是一位颇有成就的艺术家,他因油画作品<我爱北京天安门>闻名于世界.现在,他为了报答帮助他的同行们, ...

  5. POJ 2513 - Colored Sticks - [欧拉路][图的连通性][字典树]

    题目链接: http://poj.org/problem?id=2513 http://bailian.openjudge.cn/practice/2513?lang=en_US Time Limit ...

  6. poj 3310(并查集判环,图的连通性,树上最长直径路径标记)

    题目链接:http://poj.org/problem?id=3310 思路:首先是判断图的连通性,以及是否有环存在,这里我们可以用并查集判断,然后就是找2次dfs找树上最长直径了,并且对树上最长直径 ...

  7. POJ2513(字典树+图的连通性判断)

    //用map映射TLE,字典树就AC了#include"cstdio" #include"set" using namespace std; ; ;//26个小 ...

  8. 图的连通性问题的小结 (双连通、2-SAT)

    图的连通性问题包括: 1.强连通分量. 2.最小点基和最小权点基. 3.双连通. 4.全局最小割. 5.2-SAT 一.强连通分量 强连通分量很少单独出题,一般都是把求强连通分量作为缩点工具. 有三种 ...

  9. 2018年牛客多校寒假 第四场 F (call to your teacher) (图的连通性)

    题目链接 传送门:https://ac.nowcoder.com/acm/contest/76/F 思路: 题目的意思就是判断图的连通性可以用可达性矩阵来求,至于图的存储可以用邻接矩阵来储存,求出来可 ...

随机推荐

  1. libc++abi.dylib handler threw exception

    在iOS开发时,有时候遇到libc++abi.dylib handler threw exception这样的异常,  虽然在断点出加上了All Exceptions,也断到相应的代码了,但是没打印对 ...

  2. 服务管理——ntp

    一 ntp相关知识 什么是时间同步服务器 Network Time Protocol(NTP)是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,它可 ...

  3. SQL整理5

    主键(PRIMARY KEY ) 来自MSDN的描述: 表通常具有包含唯一标识表中每一行的值的一列或一组列.这样的一列或多列称为表的主键 (PK),用于强制表的实体完整性.在创建或修改表时,您可以通过 ...

  4. SQL 数据类型、约束、索引及视图

    一.数据类型:整数:int,bigint,smallint小数:float,real,decimal(长度,精度),numeric(长度,精度)字符:char(n),varchar(n) 8000英文 ...

  5. 如何生成log新信息背景图片和在图片上添加水印

    在图片上添加文字水印,其实就是要用到两个类, using System.Drawing;             using System.Drawing.Drawing2D; 废话不多说了,直接上代 ...

  6. 谈谈css3的字体大小单位[rem]

    最近接收了一份面试题,内容是移动端传播的H5(在中国通常这么叫)广告页. 秉承移动端web尽量少用px的概念,我使用rem进行了一次重构.对于rem,基本是给 html/body 元素定义一个字体大小 ...

  7. getopt()函数

    在讨论这个函数之前我们先理解两个概念:选项及其参数 gcc -o program program.c 在上述命令中 -o 就是其选项 program就是参数. getopt(): 头文件: #incl ...

  8. @Resource注解(转)

    @Resource 注解被用来激活一个命名资源(namedresource)的依赖注入,在JavaEE应用程序中,该注解被典型地转换为绑定于JNDI context中的一个对象.Spring确实支持使 ...

  9. leetcode Invert Binary Tree python

    # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = ...

  10. 安装Eclipse Color Theme

    我们都知道eclipse默认的颜色主题是白色的背景,但是如果想改变代码编辑区的背景颜色,需要怎么办呢? 今天给大家介绍一个非常赞的eclipse,可以很方便的根据自己的需求选择喜欢的颜色主题,其他的不 ...