(Problem 53)Combinatoric selections
There are exactly ten ways of selecting three from five, 12345:
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
In combinatorics, we use the notation, 5C3 = 10.
In general,
It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.
How many, not necessarily distinct, values of nCr, for 1 n 100, are greater than one-million?
题目大意:
从五个数12345中选出三个数一共有十种方法:
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
在组合数学中我们用5C3 = 10来表示.
n = 23时产生第一个超过一百万的数: 23C10 = 1144066.
对于nCr, 1 n 100,有多少超过100万的值?包括重复的在内。
//(Problem 53)Combinatoric selections
// Completed on Fri, 14 Feb 2014, 07:20
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h> long long combinatoric(int n, int r) //计算组合数的函数
{
int i;
long long s = ;
if(r > n / ) r = n - r;
for(i = n; i >= n - r + ; i--) {
s *= i;
}
for(i = ; i <= r; i++) {
s /= i;
}
return s;
} int main()
{
int i, j, s;
s = ;
for(i = ; i <= ; i++) {
j = ;
while(combinatoric(i, j) < ) j++;
if(i % ) {
s += (i / - j + ) * ; //利用组合数的对称性,分奇偶两种情况
} else {
s += (i / - j) * + ;
}
}
printf("%d\n", s);
return ;
}
Answer:
|
4075 |
(Problem 53)Combinatoric selections的更多相关文章
- (Problem 29)Distinct powers
Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...
- (Problem 22)Names scores
Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-tho ...
- (Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
随机推荐
- Oracle基础(二)---操作命令
接上篇博客介绍Oracle基本概要.以下将介绍数据库的操作指令. Sql*plus经常使用命令 连接命令 1. conn[ect] 使用方法 connusername/password@网路服务名[a ...
- CentOS 安装Node.js
先安装gcc-c++编译环境和openssl yum install gcc-c++ openssl-devel 然后 下载包并解压 cd /usr/local/src wget http://nod ...
- SQL学习之分组数据Group by
简介:"Group By"根据字面上的意思理解,就是根据"By"后面指定的规则对数据进行分组(分组就是将一个数据集按照"By"指定的规则分成 ...
- 网页播放音频、视频文件——基于web的html 5的音乐播放器(转载)
文章转载自:开源中国社区 [http://www.oschina.net] 想通过手机客户端(支持 Android.iPhone 和 Windows Phone)访问开源中国:请点这里 HTML5 是 ...
- WCF契约之---服务契约 、数据契约、 消息契约
本篇博文只是简单说下WCF中的契约的种类.作用以及一些简单的代码示例.在WCF中契约分为服务契约.数据契约和消息契约.下面对这几种契约进行简单的介绍. 服务契约 服务契约描述了暴露给外部的类型(接口或 ...
- BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )
状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...
- Enum基础
enum ColorE { RED, GREEN, BLUE; } public class GetEnumContent { public static void main(Stri ...
- 高效的数组去重(js)
function uniqueArray(data){ data = data || []; var a = {}; for (var i=0; i<data.length; i++) { va ...
- FZU Problem 1686 神龙的难题 重复覆盖
题目链接 给出大矩形的长宽, 矩形里面有1,0两个值, 给出小矩形的长宽, 求用最少的小矩形覆盖所有的1. 重复覆盖的模板题. #include <iostream> #include & ...
- 记录.net 中的常见术语
--Entity Framework和NHibernate --EF和NH都是一种ORM技术.就是对象关系模型映射. --NHibernate和Entity Framework 4.0优劣势争论 -- ...