思路:我们可以考虑三角剖分,这样问题就变成考虑三角形的选取概率和三角形内有多少个点了。

先用树状数组预处理出三角剖分的三角形中有多少个点,然后用线段树维护,先用原点极角排序,然后枚举i,再以i极角排序,此时线段树的作用就来了,每次到一个询问的教室点,我们就在线段树里面查找之前的概率,统计贡献即可。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define MAXN 2005
struct Point{
double x,y;
double p,ang;
int id;
}p[MAXN],Cur[MAXN];
double P[MAXN],T[MAXN * ];
int n,m,rk[MAXN],s[MAXN],f[MAXN][MAXN];
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-')f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
bool cmp(Point p1,Point p2){
return p1.ang<p2.ang;
}
void build (int k,int l,int r){
if (l==r) {T[k]=-P[Cur[l].id];return;}
int mid=(l+r)>>;
build(k*,l,mid);
build(k*+,mid+,r);
T[k]=T[k*]*T[k*+];
}
double query(int k,int l,int r,int x,int y){
if (y<l||x>r) return 1.0;
if (x<=l&&r<=y) return T[k];
int mid=(l+r)>>;
return query(k*,l,mid,x,y)*query(k*+,mid+,r,x,y);
}
void init(){
n=read();m=read();
for (int i=;i<=n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
for (int i=n+;i<=n+m;i++)
scanf("%lf%lf%lf",&p[i].x,&p[i].y,&P[i]);
for (int i=;i<=n+m;i++)
p[i].ang=atan2(p[i].y,p[i].x);
}
void add(int pos){
for (;pos<=n+m;pos+=(pos)&(-pos)) s[pos]++;
}
int sum(int pos){
int res=;
for (;pos;pos-=(pos)&(-pos)) res+=s[pos];
return res;
}
void Sort(int mid){
int tot=;
for (int i=;i<=n+m;i++)
if (i!=mid) Cur[++tot]=p[i],Cur[tot].ang=atan2(Cur[tot].y-p[mid].y,Cur[tot].x-p[mid].x);
std::sort(Cur+,Cur++tot,cmp);
for (int i=;i<=tot;i++) rk[Cur[i].id]=i;
}
int range(int l,int r){
if (l<=r) return sum(r)-sum(l-);
return sum(n+m)-sum(l-)+sum(r);
}
void solve(){
for (int i=;i<=n+m;i++)
p[i].ang=atan2(p[i].y,p[i].x),p[i].id=i;
std::sort(p+,p++n+m,cmp);
for (int i=;i<=n+m+;i++)
if (p[i].id>n){
Sort(i);
for (int j=;j<=n+m;j++) s[j]=;
for (int j=i+;j<=n+m+;j++){
if (p[j].id<=n&&p[j].id) add(rk[p[j].id]);
f[p[i].id][p[j].id]=std::max(,range(rk[p[j].id],rk[]));
}
for (int j=;j<=n+m;j++) s[j]=;
for (int j=i-;j;j--){
if (p[j].id<=n&&p[j].id) add(rk[p[j].id]);
f[p[i].id][p[j].id]=std::max(,range(rk[],rk[p[j].id]));
}
}
}
double ask(int l,int r){
if (l>r) return query(,,n+m-,l,n+m-)*query(,,n+m-,,r-);
else return query(,,n+m-,l,r-);
}
void linear(){
double ans=0.0;
int tot=;
for (int i=;i<=n+m;i++)
if (p[i].id>n){
tot=;
for (int j=;j<=n+m;j++)
if (i!=j) Cur[++tot]=p[j],Cur[tot].ang=atan2(p[j].y-p[i].y,p[j].x-p[i].x);
std::sort(Cur+,Cur++tot,cmp);
build(,,tot);
for (int j=,Pp=;j<=tot;j++){
for(;(Cur[j].x - p[i].x) * (Cur[Pp].y - p[i].y) - (Cur[j].y - p[i].y) * (Cur[Pp].x - p[i].x) > ;) Pp=Pp%tot+;
if (Cur[j].id>n){
double pr=ask(Pp,j)*P[p[i].id]*P[Cur[j].id];
if (p[i].x * Cur[j].y - p[i].y * Cur[j].x < )
ans -= pr * f[p[i].id][Cur[j].id]; else
ans += pr * f[p[i].id][Cur[j].id];
}
}
}
printf("%.9lf\n",ans);
}
int main(){
init();
solve();
linear();
}

FJ省队集训DAY2 T2的更多相关文章

  1. FJ省队集训DAY2 T1

    思路:转换成n条三维空间的直线,求最大的集合使得两两有交点. 有两种情况:第一种是以某2条直线为平面,这时候只要统计这个平面上有几条斜率不同的直线就可以了 还有一种是全部交于同一点,这个也只要判断就可 ...

  2. FJ省队集训DAY4 T2

    XXX #include<cstdio> #include<iostream> #include<cmath> #include<cstring> #i ...

  3. FJ省队集训DAY3 T2

    思路:如果一个DAG要的路径上只要一条边去切掉,那么要怎么求?很容易就想到最小割,但是如果直接做最小割会走出重复的部分,那我们就这样:反向边设为inf,这样最小割的时候就不会割到了,判断无解我们直接用 ...

  4. FJ省队集训最终测试 T2

    思路:发现如果一个人一共选了x个点,那么选中某一个点对的概率都是一样的,一个人选x个点的总方案是C(n,x),一个人选中某个点对的总方案是C(n-2,x-2),这样,那么选中某个点对的概率就是 x*( ...

  5. FJ省队集训DAY3 T1

    思路:我们考虑如果取掉一个部分,那么能影响到最优解的只有离它最近的那两个部分. 因此我们考虑堆维护最小的部分,离散化离散掉区间,然后用线段树维护区间有没有雪,最后用平衡树在线段的左右端点上面维护最小的 ...

  6. FJ省队集训DAY1 T1

    题意:有一堆兔子,还有一个r为半径的圆,要求找到最大集合满足这个集合里的兔子两两连边的直线不经过圆. 思路:发现如果有两个点之间连边不经过圆,那么他们到圆的切线会构成一段区间,那么这两个点的区间一定会 ...

  7. FJ省队集训DAY4 T3

    #include<cstdio> #include<iostream> #include<cmath> #include<cstring> #inclu ...

  8. FJ省队集训最终测试 T3

    思路:状态压缩dp,f[i][j[[k]代表i行j列这个格子,连续的状态为k,这个连续的状态是什么?就是下图 X格子代表我当前走到的地方,而这里的状态就是红色部分,也就是连续的一段n的状态,我们是分每 ...

  9. FJ省队集训DAY5 T1

    思路:考试的时候打了LCT,自以为能过,没想到只能过80.. 考完一想:lct的做法点数是100W,就算是nlogn也会T. 讲一下lct的做法把:首先如果一条边连接的两个点都在同一个联通块内,那么这 ...

随机推荐

  1. rsyslog imfile 模块说明

    stop() { echo -n $"Shutting down system logger: " killproc -p "${PIDFILE}" -d 30 ...

  2. [转载]SQL Server查找包含某关键字的存储过程3种方法

    存储过程都写在一个指定的表中了,我们只要使用like查询就可以实现查询当前这台SQL Server中所有存储过程中包括了指定关键字的存储过程并显示出来,下面一起来看看我总结了几条命令. 例子1 代码如 ...

  3. jsonp封装

    //jsonp的封装函数 function jsonp(url,parmter,callback){ //创建script标签 var script=document.createElement('s ...

  4. [原创作品]Javascript内存管理机制

    如果你也喜欢分享,欢迎加入我们:QQ group:164858883 内存策略:堆内存和栈内存栈内存:在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配.当在一段代码块中定义一个 ...

  5. C++ 推断进程是否存在

    [cpp] view plaincopyprint? #include <windows.h> #include "psapi.h" #include"std ...

  6. android 删除的警告对话框

    在图形界面之中,对话框也是人机交互的一种重要的形式,程序可以通过对话框对用户进行一些信息的提示,而 用户也可以通过对话框和程序进行一些简单的交互操作. 在Android的开发之中,所有的对话框都是从a ...

  7. 怎么样学好C++

    声明:这篇文章非本人所写,转自:http://coolshell.cn/articles/4119.html 昨天写了一篇如何学好C语言,就有人回复问我如何学好C++,所以,我把我个人的一些学习经验写 ...

  8. 基本SQL语句练习之SELECT

    一.SQL Plus连接sqlplus:以命令行方式连接数据库sqlplusw:以窗口登录方式连接数据库conn sys/password as sysdba;show userselect * fr ...

  9. 用IO流发送Http请求

    package com.j1.mai.action; import java.io.BufferedReader; import java.io.DataOutputStream; import ja ...

  10. Drawable与Bitmap 自定义

    Drawable简介 Drawable是Android平下通用的图形对象,它可以装载常用格式的图像,比如GIF.PNG.JPG,当然也支持BMP.相比于View,我们并不需要去考虑如何measure. ...