http://acm.hdu.edu.cn/showproblem.php?pid=4605

Magic Ball Game

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 309    Accepted Submission(s): 73

Problem Description
When the magic ball game turns up, Kimi immediately falls in it. The interesting game is made up of N balls, each with a weight of w[i]. These N balls form a rooted tree, with the 1st ball as the root. Any ball in the game has either 0 or 2 children ball. If a node has 2 children balls, we may define one as the left child and the other as the right child.

The rules are simple: when Kimi decides to drop a magic ball with a weight of X, the ball goes down through the tree from the root. When the magic ball arrives at a node in the tree, there's a possibility to be catched and stop rolling, or continue to roll down left or right. The game ends when the ball stops, and the final score of the game depends on the node at which it stops.

After a long-time playing, Kimi now find out the key of the game. When the magic ball arrives at node u weighting w[u], it follows the laws below:


1  If X=w[u] or node u has no children balls, the magic ball stops.


2  If X<w[u], there's a possibility of 1/2 for the magic ball to roll down either left or right.


3  If X>w[u], the magic ball will roll down to its left child in a possibility of 1/8, while the possibility of rolling down right is 7/8.

In order to choose the right magic ball and achieve the goal, Kimi wonders what's the possibility for a magic ball with a weight of X to go past node v. No matter how the magic ball rolls down, it counts if node v exists on the path that the magic ball goes along.

Manual calculating is fun, but programmers have their ways to reach the answer. Now given the tree in the game and all Kimi's queries, you're required to answer the possibility he wonders.

 
Input
The input contains several test cases. An integer T(T≤15) will exist in the first line of input, indicating the number of test cases.

Each test case begins with an integer N(1≤N≤10
5), indicating the number of nodes in the tree. The following line contains N integers w[i], indicating the weight of each node in the tree. (1 ≤ i ≤ N, 1 ≤ w[i] ≤ 10
9, N is odd)

The following line contains the number of relationships M. The next M lines, each with three integers u,a and b(1≤u,a,b≤N), denotes that node a and b are respectively the left child and right child of node u. You may assume the tree contains exactly N nodes and (N-1) edges.

The next line gives the number of queries Q(1≤Q≤10
5). The following Q lines, each with two integers v and X(1≤v≤N,1≤X≤10
9), describe all the queries.

 
Output
If the magic ball is impossible to arrive at node v, output a single 0. Otherwise, you may easily find that the answer will be in the format of 7
x/2
y . You're only required to output the x and y for each query, separated by a blank. Each answer should be put down in one line.

思路: 首先考虑一个询问(V,X),若从根节点到V节点的路径上(不包括V)已存在权值为X的节点,则小球不可能到达V节点,否则,不妨定义往左走的路径为“左路径”,往右走的路径称为“右路径”。设lmi,lma,rmi,rma分别表示左路径上小于X的节点数,左路径上大于X的节点数,右路径上小于X的节点数,右路径上大于X的节点数,则最终的答案即为: (1/2)^(lma+rma)*(7/8)^(rmi)*(1/8)^(lmi)。即输出 rmi 和 3*(lmi+rmi)+(lma+rma)即可。

对于本题,我们可以离线处理每个节点上的询问,从根节点做一次DFS,在过程中每经过一个节点就处理该节点所对应的询问,我们可以用线段树,树状数组等数据结构记录从根节点到V的路径上所有的权值(不包括V),然后就可以得到lmi,lma,rmi,rma,剩下的就是更行答案了,另外X很大,需要离散化处理。

代码如下:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <vector>
#define maxn 100010
#define mid ((t[p].l+t[p].r)>>1)
#define ls (p<<1)
#define rs (ls|1)
using namespace std;
struct Tree
{
int w;
int left,right;
}node[maxn];
vector<int> vec[maxn];
int c[maxn<<1][2];
void init(int n)
{
for(int i=0;i<=n;i++)
{
vec[i].clear();
node[i].left=node[i].right=node[i].w=-1;
}
}
void add(int a,int b,int c)
{
node[a].left=b;
node[a].right=c;
}
int ans[maxn][2],vis[maxn],po[maxn<<1],len; int lowbit(int x)
{
return x&(-x);
}
void addnum(int x,int val,int tt)
{
while(x<=len)
{
c[x][tt]+=val;
x+=lowbit(x);
}
}
int getsum(int x,int tt)
{
int sum=0;
while(x>0)
{
sum+=c[x][tt];
x-=lowbit(x);
}
return sum;
}
int search(int len,int x)
{
int mi=1,ma=len,Mid;
while(mi<=ma)
{
Mid=(mi+ma)>>1;
if(po[Mid]==x)
return Mid;
if(po[Mid]<x)
mi=Mid+1;
else
ma=Mid-1;
}
}
void dfs(int now)
{
int i,w=search(len,node[now].w);
for(i=0;i<vec[now].size();i+=2)
{
int x=search(len,vec[now][i]),num=vec[now][i+1];
if(getsum(x,0)-getsum(x-1,0)>0||getsum(x,1)-getsum(x-1,1)>0)//如果已经存在x
{
ans[num][0]=-1;
}
else
{
int lma,lmi,rma,rmi;// 左边大于,左边小于,右边大于,右边小于
lmi=getsum(x-1,0);
lma=getsum(len,0)-getsum(x,0);
rmi=getsum(x-1,1);
rma=getsum(len,1)-getsum(x,1);
ans[num][0]=rmi;
ans[num][1]=3*(rmi+lmi)+rma+lma;
}
}
if(node[now].left!=-1)
{
addnum(w,1,0);
dfs(node[now].left);
addnum(w,-1,0);
}
if(node[now].right!=-1)
{
addnum(w,1,1);
dfs(node[now].right);
addnum(w,-1,1);
}
}
int main()
{
//freopen("dd.txt","r",stdin);
int ncase;
scanf("%d",&ncase);
while(ncase--)
{
int n,i,m,q,x,v;
scanf("%d",&n);
init(n);
for(i=1;i<=n;i++)
{
scanf("%d",&node[i].w);
po[i]=node[i].w;
}
scanf("%d",&m);
int a,b,cc;
memset(vis,0,sizeof(vis));
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&cc);
add(a,b,cc);
vis[b]=vis[cc]=1;
}
scanf("%d",&q);
for(i=1;i<=q;i++)
{
scanf("%d%d",&v,&x);
vec[v].push_back(x);
vec[v].push_back(i);
po[i+n]=x;
}
sort(po+1,po+q+n+1);
len=unique(po+1,po+q+n+1)-(po+1);
int root;
for(i=1;i<=n;i++)
{
if(!vis[i])
{
root=i;
break;
}
}
for(i=0;i<=len;i++)
c[i][0]=c[i][1]=0;
dfs(root);
for(i=1;i<=q;i++)
{
if(ans[i][0]==-1)
printf("0\n");
else
printf("%d %d\n",ans[i][0],ans[i][1]);
}
}
return 0;
}

2013 多校联合 F Magic Ball Game (hdu 4605)的更多相关文章

  1. 2013 多校联合 2 A Balls Rearrangement (hdu 4611)

    Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  2. 2013 多校联合2 D Vases and Flowers (hdu 4614)

    Vases and Flowers Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others ...

  3. 2013多校联合2 I Warm up 2(hdu 4619)

    Warm up 2 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Total ...

  4. 2013多校联合3 G The Unsolvable Problem(hdu 4627)

    2013-07-30 20:35 388人阅读 评论(0) 收藏 举报 http://acm.hdu.edu.cn/showproblem.php?pid=4627 The Unsolvable Pr ...

  5. 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)

    题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...

  6. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

  7. 2017ACM暑期多校联合训练 - Team 7 1002 HDU 6121 Build a tree (深搜+思维)

    题目链接 Problem Description HazelFan wants to build a rooted tree. The tree has n nodes labeled 0 to n− ...

  8. 2017ACM暑期多校联合训练 - Team 6 1001 HDU 6096 String (字符串处理 字典树)

    题目链接 Problem Description Bob has a dictionary with N words in it. Now there is a list of words in wh ...

  9. 2017ACM暑期多校联合训练 - Team 6 1010 HDU 6105 Gameia (博弈)

    题目链接 Problem Description Alice and Bob are playing a game called 'Gameia ? Gameia !'. The game goes ...

随机推荐

  1. 只有电信3G是公网ip。

    只有电信3G是公网ip,其它网络拿到是内部网.

  2. apache重启操作

    方法: apahce启动命令: 推荐/apachectl start apaceh启动 apache停止命令 /apachectl stop   停止 apache重新启动命令: /apachectl ...

  3. java 多线程使用方法及Socket的使用

    public class newThread implements Runnable{ public void run(){ dosome(); } public void dosome(){ Sys ...

  4. 适合入门自学服装裁剪滴书(更新ing)

    [♣]适合入门自学服装裁剪滴书(更新ing) [♣]适合入门自学服装裁剪滴书(更新ing) 适合入门自学服装裁剪滴书(更新ing) 来自: 裁缝阿普(不为良匠,便为良医.) 2014-04-06 23 ...

  5. 全国计算机等级考试二级教程-C语言程序设计_第16章_文件

    写入一段文本到文件 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> main() { ...

  6. android 的线程模型和AsyncTask

            android 的线程模型:当一个 android 的应用运行后,就会有一个 UI 的 main 线程启动 , 这是一个非常重要的线程,它负责把事件分派到相应的控件,其中就包括屏幕绘图 ...

  7. sctf pwn300

    拿到程序后,拉入IDA,大概看了一番后,尝试运行,进一步了解程序的功能. 发现NX enabled,No PIE. 一号是一个猜数字的游戏,二号是一个留言本,三号是打印出留言的内容,四号是退出. 观察 ...

  8. NotificationManager 发送通知

    该应用的界面如下,界面代码在此不再给出,源码github账户下载 MainActivity.java public class MainActivity extends Activity { priv ...

  9. 浅谈Oracle数据库性能优化的目标

    Oracle性能优化保证了Oracle数据库的健壮性,为了保证Oracle数据库运行在最佳的性能状态下,在信息系统开发之前就应该考虑数据库的优化策略.从数据库性能优化的场景来区分,可以将性能优化分为如 ...

  10. MySqL触发器以及常用转换函数注意事项

    1,触发器(http://www.cnblogs.com/zzwlovegfj/archive/2012/07/04/2576989.html)       1.MYSQL中触发器中不能对本表进行 i ...