CRC校验源码分析
这两天做项目,需要用到 CRC 校验。以前没搞过这东东,以为挺简单的。结果看看别人提供的汇编源程序,居然看不懂。花了两天时间研究了一下 CRC 校验,希望我写的这点东西能够帮助和我有同样困惑的朋友节省点时间。
先是在网上下了一堆乱七八遭的资料下来,感觉都是一个模样,全都是从 CRC 的数学原理开始,一长串的表达式看的我头晕。第一次接触还真难以理解。这些东西不想在这里讲,随便找一下都是一大把。我想根据源代码来分析会比较好懂一些。
费了老大功夫,才搞清楚 CRC 根据”权”(即多项表达式)的不同而相应的源代码也有稍许不同。以下是各种常用的权。
CRC8=X8+X5+X4+1
CRC-CCITT=X16+X12+X5+1
CRC16=X16+X15+X5+1
CRC12=X12+X11+X3+X2+1
CRC32=X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+1
以下的源程序全部以 CCITT 为例。其实本质都是一样,搞明白一种,其他的都是小菜。
图 1,图 2 说明了 CRC 校验中 CRC 值是如何计算出来的,体现的多项式正是 X16+X12+X5+1。 Serial Data 即是需要校验的数据。从把数据移位开始计算,将数据位(从最低的数据位开始)逐位移入反向耦合移位寄存器(这个名词我也不懂,觉得蛮酷的,就这样写了,嘿)。当所有数据位都这样操作后,计算结束。此时,16 位移位寄存器中的内容就是 CRC 码。
图中进行 XOR 运算的位与多项式的表达相对应。
X5 代表 Bit5,X12 代表 Bit12,1 自然是代表 Bit0,X16 比较特别,是指移位寄存器移出的数据,即图中的DATA OUT。可以这样理解,与数据位做XOR运算的是上次 CRC值的 Bit15。
根据以上说明,可以依葫芦画瓢的写出以下程序。(程序都是在 keil C 7.10 下调试的)
typedef unsigned char uchar;
typedef unsigned int uint;
code uchar crcbuff [] = { 0x00,0x00,0x00,0x00,0x06,0x0d,0xd2,0xe3};
uint crc; // CRC 码
void main(void)
{
uchar *ptr;
crc = ; // CRC 初值
ptr = crcbuff; // 指向第一个 Byte 数据
crc = crc16l(ptr,);
);
}
uint crc16l(uchar *ptr,uchar len) // ptr 为数据指针,len 为数据长度
{
uchar i;
while(len--)
{
; i>>=)
{
) {crc<<=; crc^=-
; -
) crc^=-
}
ptr++;
}
return(crc);
}
执行结果 crc = 0xdbc0;
程序 1-1,1-2,1-3 可以理解成移位前 crc 的 Bit15 与数据对应的 Bit(*ptr&i)做 XOR运算,根据此结果来决定是否执行 crc^=0x1021。只要明白两次异或运算与原值相同,就不难理解这个程序。
很多资料上都写了查表法来计算,当时是怎么也没想通。其实蛮简单的。假设通过移位处理了 8 个 bit 的数据,相当于把之前的 CRC 码的高字节(8bit)全部移出,与一个 byte 的数据做XOR 运算,根据运算结果来选择一个值(称为余式),与原来的 CRC 码再做一次 XOR 运算,就可以得到新的 CRC 码。
不难看出,余式有 256 种可能的值,实际上就是 0~255 以 X16+X12+X5+1 为权得到的 CRC码,可以通过函数 crc16l来计算。以1 为例。
code test[]={0x01};
crc = ;
ptr = test;
crc = crc16l(ptr,);
执行结果 crc = 1021,这就是1 对应的余式。
进一步修改函数,我这里就懒得写了,可得到 X16+X12+X5+1 的余式表。
code ]={ // X16+X12+X5+1 余式表
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};
根据这个思路,可以写出以下程序:
uint table_crc(uchar *ptr,uchar len) // 字节查表法求 CRC
{
uchar da;
)
{
da=(uchar) (crc/); // 以 8 位二进制数暂存 CRC 的高 8 位
crc<<=; // 左移 8 位
crc^=crc_ta[da^*ptr]; // 高字节和当前数据 XOR 再查表
ptr++;
}
return(crc);
}
本质上 CRC 计算的就是移位和异或。所以一次处理移动几位都没有关系,只要做相应的处理就好了。
下面给出半字节查表的处理程序。其实和全字节是一回事。
code ]={
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
};
uint ban_crc(uchar *ptr,uchar len)
{
uchar da;
)
{
da = ((uchar)(crc/))/;
crc <<= ;
crc ^=crc_ba[da^(*ptr/)];
da = ((uchar)(crc/)/);
crc <<= ;
crc ^=crc_ba[da^(*ptr&0x0f)];
ptr++;
}
return(crc);
}
crc_ba[16]和crc_ta[256]的前 16 个余式是一样的。
其实讲到这里,就已经差不多了。反正当时我以为自己是懂了。结果去看别人的源代码的时候,也是说采用 CCITT,但是是反相的。如图 3
反过来,一切都那么陌生,faint.吐血,吐血。
仔细分析一下,也可以很容易写出按位异或的程序。只不过由左移变成右移。
uint crc16r(unsigned char *ptr, unsigned char len)
{
unsigned char i;
)
{
;i <<= )
{
) {crc >>= ; crc ^= 0x8408;}
;
) crc ^= 0x8408;
}
ptr++;
}
return(crc);
}
0x8408 就是 CCITT 的反转多项式。
套用别人资料上的话
“反转多项式是指在数据通讯时,信息字节先传送或接收低位字节,如重新排位影响 CRC计算速度,故设反转多项式。”
如
code uchar crcbuff [] = { 0x00,0x00,0x00,0x00,0x06,0x0d,0xd2,0xe3};
反过来就是
code uchar crcbuff_fan[] = {0xe3,0xd2,0x0d,0x06,0x00,0x00,0x00,0x00};
crc = 0;
ptr = crcbuff_fan;
crc = crc16r(ptr,8);
执行结果 crc = 0x5f1d;
如想验证是否正确,可改
code uchar crcbuff_fan_result[] = {0xe3,0xd2,0x0d,0x06,0x00,0x00,0x00,0x00,0x1d,0x5f};
ptr = crcbuff_fan_result;
crc = crc16r(ptr,);
执行结果 crc = 0; 符合 CRC 校验的原理。
请注意 0x5f1d 在数组中的排列中低位在前,正是反相运算的特点。不过当时是把我搞的晕头转向。
在用半字节查表法进行反相运算要特别注意一点,因为是右移,所以 CRC 移出的 4Bit与数据 XOR 的操作是在 CRC 的高位端。因此余式表的产生是要以下列数组通过修改函数crc16r 产生。
code uchar ban_fan[]= {,0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x80,0x90,0xa0,0xb0,0xc0,0xd0,0xe0,0xf0};
得出余式表
code ]={
0x0000, 0x1081, 0x2102, 0x3183,
0x4204, 0x5285, 0x6306, 0x7387,
0x8408, 0x9489, 0xa50a, 0xb58b,
0xc60c, 0xd68d, 0xe70e, 0xf78f
};
uint ban_fan_crc(uchar *ptr,uchar len)
{
uchar da;
)
{
da = (uchar)(crc&0x000f);
crc >>= ;
crc ^= fan_yushi [da^(*ptr&0x0f)];
da = (uchar)(crc&0x000f);
crc >>= ;
crc ^= fan_yushi [da^(*ptr/)];
ptr++;
}
return(crc);
}
主程序中
crc = 0;
ptr = crcbuff_fan;
crc = ban_fan_crc(ptr,8);
执行结果 crc = 0x5f1d;
反相运算的全字节查表法就很容易了,懒的写了。
CRC校验源码分析的更多相关文章
- django身份认证、权限认证、频率校验使用及源码分析
一. 身份认证源码分析 1.1 APIView源码的分析 APIView源码之前分析过https://www.cnblogs.com/maoruqiang/p/11135335.html,里面主要将r ...
- HDFS源码分析数据块校验之DataBlockScanner
DataBlockScanner是运行在数据节点DataNode上的一个后台线程.它为所有的块池管理块扫描.针对每个块池,一个BlockPoolSliceScanner对象将会被创建,其运行在一个单独 ...
- Django之DRF源码分析(二)---数据校验部分
Django之DRF源码分析(二)---数据校验部分 is_valid() 源码 def is_valid(self, raise_exception=False): assert not hasat ...
- drf 认证校验及源码分析
认证校验 认证校验是十分重要的,如用户如果不登陆就不能访问某些接口. 再比如用户不登陆就不能够对一个接口做哪些操作. drf中认证的写法流程如下: 1.写一个类,继承BaseAuthenticatio ...
- drf 权限校验设置与源码分析
权限校验 权限校验和认证校验必须同时使用,并且权限校验是排在认证校验之后的,这在源码中可以查找到其执行顺序. 权限校验也很重要,认证校验可以确保一个用户登录之后才能对接口做操作,而权限校验可以依据这个 ...
- u-boot源码分析
Uboot源码分析 源码以u-boot-1.3.4为基准,主芯片采用at91sam9260,主要介绍uboot执行流程. uboot官网:http://www.denx.de/wiki/U-Boot/ ...
- C# DateTime的11种构造函数 [Abp 源码分析]十五、自动审计记录 .Net 登陆的时候添加验证码 使用Topshelf开发Windows服务、记录日志 日常杂记——C#验证码 c#_生成图片式验证码 C# 利用SharpZipLib生成压缩包 Sql2012如何将远程服务器数据库及表、表结构、表数据导入本地数据库
C# DateTime的11种构造函数 别的也不多说没直接贴代码 using System; using System.Collections.Generic; using System.Glob ...
- Nginx源码分析:3张图看懂启动及进程工作原理
编者按:高可用架构分享及传播在架构领域具有典型意义的文章,本文由陈科在高可用架构群分享.转载请注明来自高可用架构公众号「ArchNotes」. 导读:很多工程师及架构师都希望了解及掌握高性能服务器 ...
- Android分包MultiDex源码分析
转载请标明出处:http://blog.csdn.net/shensky711/article/details/52845661 本文出自: [HansChen的博客] 概述 Android开发者应该 ...
随机推荐
- keil Ax51中条件编译指令IF与$IF的区别
keil A51中条件编译指令IF与$IF的区别:1.IF和$IF是不等价的,不要混淆了;2.带前缀$的条件编译$IF用法:(汇编器指示命令Assembler Directive)只能用来测试由$SE ...
- 查询Sqlserver 表结构信息 SQL
SELECT 表名 then d.name else '' end, 表说明 then isnull(f.value,'') else '' end, 字段序号 = a.colorder, 字段名 = ...
- 关于selenium中的sendKeys()隔几秒发送一个字符
看一下你的IEDriverServer.exe是不是64位的,我也遇到了这样的问题,换成32位的IEDriverServer.exe,瞬间速度快了
- NOI 2013 矩阵游戏
http://uoj.ac/problem/124 矩阵乘法. 十进制快速幂. 刚开始还傻傻地写二进制快速幂,然后陈老师一语点醒梦中人...... #include<cstdio> #in ...
- Kill 锁,1222:已超过了锁请求超时时段,
应该是你的表体积很大,处理的时候费事,因为几乎所有数据库操作都需要加或多或少的锁,所以会超时.首先你可以使用select * from sys.sysprocesses where blocked&l ...
- hdu 5422 Rikka with Graph(简单题)
Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...
- Maven .m2 setting.xml配置
settings.xml <settings xmlns="http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi="h ...
- windows下体验Redis
Redis 是一个高性能的key-value数据库, 使用内存作为主存储,数据访问速度非常快,当然它也提供了两种机制支持数据持久化存储.比较遗憾的是,Redis项目不直接支持Windows,Windo ...
- 寒哥细谈之AutoLayout全解
文/南栀倾寒(简书作者)原文链接:http://www.jianshu.com/p/683fbcbfb705著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 看到群中好多朋友还停留在Fr ...
- 关于SetCapture() 和 ReleaseCapture()的使用方法
查MSND,对SetCapture()函数的说明为:“该函数在属于当前线程的指定窗体里设置鼠标捕获.一旦窗体捕获了鼠标,全部鼠标输入都针对该窗体,不管光标是否在窗体的边界内.同一时刻仅仅能有一个窗体捕 ...