【问题描述】

火车司机出秦川跳蚤国王下江南共价大爷游长沙。每个周末勤劳的共价大爷都会开车游历长沙市。

长沙市的交通线路可以抽象成为一个aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA9UlEQVR4nGP5//8/AymAhSTVw1HDvzf7GqIimvdoLL5Ydbsyr3/rbRbbtv07K/U5cWhgEnHMSVBv2/t0fuP+1M5Tj2ubdC1mLrtZqG/AgctJPx6duv9X2Ll4RruXCNOP8yxMzLxiPMy4/fD/y53zL7ltY2xFmICcr/fPPedU0xVnxa3h56PT9//Je8uDXfDzyem7f2UzFDgYcGr4/+Xu2eec6gYSYDO/3T39jF1NX4IVt4afj4EWyHnIc0I4Z+79kUtBswBFw/+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcMi+XyEwnlDg7t9YEvIgTEsAgI9iPMzsytMAAAAASUVORK5CYII=" alt="+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcM" /> 个点aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACUAAAASCAIAAABTg4BBAAABjElEQVR4nGP5//8/Ax0BCz0tGzb2/X51ZHpxznSOyWdm23LT1r5/70/OrOvefv/RgYuvgjClqe8/DuXwntUpT/qNtrZikUWx79+bfQ1REc17NBZfrLpdmde/9TaLbdv+nZX6nMRbx8QpIgQMUFzSKPYxiTjmJKi37X06v3F/auepx7VNuhYzl90s1DfgIN5C/AAtPH88OnX/r7Bz8Yx2LxGmH+dZmJh5xXiYqWUZhn3/v9w5/5LbNsZWhAnI+Xr/3HNONV1xVqDM97P1/mkbX/3FYgQjv9PUbX1W3FikCNn389Hp+//kveXBwffzyem7f2UzFMAcTuPGXWcbyfAQPvv+f7l79jmnuoEEyEcM3+6efsaupg/hUAug2PfzMdB7ch7ynBDOmXt/5FIUqJZUMOz7/xXoPQ41A0mwj77eO/3439sTy7c8qA5SYCPawN+PN0+YsvPa9QO3GN69q0/LNFCzTC6J04bFLrJ9jMIh+36FwHhCgbt/k1F1sMr6lnb6AhnzsUoPj/J68NgHAFuIkvhkay6OAAAAAElFTkSuQmCC" alt="J68NgHAFuIkvhkay6OAAAAAElFTkSuQmCC" /> 条边的无向图点编号为aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAAfklEQVR4nGP5//8/AymAhSTV1NLw+9WR6cU50zkmn5lty01Aw7/3J2fWdW+//+jAxVdBRNnAoRzeszrlSb/R1lainMTEKSIEdBMO92OzgSAY1QAM0MebJ0zZee36gVsM797Vp2UaqFkml8Rpc+PUwCrrW9rpC2TMp5WTaKABAIOLKT2S4H+GAAAAAElFTkSuQmCC" alt="R1lainMTEKSIEdBMO92OzgSAY1QAM0MebJ0zZee3" /> 到aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA9UlEQVR4nGP5//8/AymAhSTVw1HDvzf7GqIimvdoLL5Ydbsyr3/rbRbbtv07K/U5cWhgEnHMSVBv2/t0fuP+1M5Tj2ubdC1mLrtZqG/AgctJPx6duv9X2Ll4RruXCNOP8yxMzLxiPMy4/fD/y53zL7ltY2xFmICcr/fPPedU0xVnxa3h56PT9//Je8uDXfDzyem7f2UzFDgYcGr4/+Xu2eec6gYSYDO/3T39jF1NX4IVt4afj4EWyHnIc0I4Z+79kUtBswBFw/+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcMi+XyEwnlDg7t9YEvIgTEsAgI9iPMzsytMAAAAASUVORK5CYII=" alt="+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcM" /> 任意两点间均存在恰好一条路径显然两个点之间最多也只会有一条边相连。有一个包含一些点对aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAATCAIAAABgP6gTAAADzUlEQVR4nGP5//8/w+AALFhF/707u/OegpuJMDPVLfx+e8dJDicHWTainPLr3vIpl4zLjKnvDiDgVNL73D77bEGWMQ8jIaf8fbah76pDWzQHLRwCBMxS7sF/8xff0ctUZcXvlF+3l63g9FvCRyOHgACbqrdu87zzCa1mnPic8vvB1l3cLqlcNHQJ0FJpK5ULK65+NzNBdguaU/5/vLD/p6E/bV3CwMAhb8x26ujzPyZKSPajOeXnk/Mv+K1EkSPx37tjE7JiijcoLX2wK0ri791prgZNytvvzrXhxmXRrwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpWE5gUNS/uvaBz8YlHhwOuXPu8e/RfhRBJmErAqnTji8LXjK5qfhSew3r/716623wOkOIGBTCGuoXT3b58StL//12BnZFFwdFKd+0hREypHMfGIMz198+8+AlI3QnPLvx+d/HGxouYyBUdipMFzIafKshffO79KaMS9KDntxhACcqvbKf7uOP/gZIszx8+7m/aLZS0yQY52JjZvl58cf/4COwuUUoLXABINpNI9ZdpLsnJbeoDMns7S50J2KCVjEDE2EXpy68fG/4ZcdrZuMWvaqoZVpmJagOYWJg5fpx28MZf/eHF15nJmT4e3z7wyE3QECHMr2aoxbj91/r7ez+0PGMjt+VG3/fn37wy7KwYTHKazCcmxvP/5B1fbuQG3sdIn+rZPz9IomHGi39hEi7BwmAW0rybf79i14vsu2aTdGhP799IpBwhw1eNHUsMkYSX28/fo3Az80E/3/dKIhsPJf2448Q97XeU55sX1bn3vGSkFj+Mf5ahPLaRJ9Z7ZnKaMWnQwcCjaaTN0NXQorLhlhlg0/nj/k1JdjRxFDcwojn4ET58a73xlUICb/vj0jpeWq0Q5tPkYGRlHXfB8Oz4rsVv5JlX6yIAVMvNLS7B8ObL7xHcMpDNzqdoqcz+NbfMSYGNDBz0fnvht4SOMv+FnlvDx/zr3+zd0c7BVWtbIr/8pg7hTwWPkBJR2xqaTNbFsR9VWVkwED/Hz9UjypP0Mdswpm+PP02A3t0DK0wMLIQazK4VF/pp37ZG5DsBr6/+nigrqWU2HTp6miBwmwKlvQ8zptGnpyhcjd3XbJNjUZvWjCLCCYxL3y9Ps33TSJUSdQOf9n4jcrWpAgx42w7ve9Jd13PMvNbrQXHg+cukgKSzvj7/M9G1jSsjFDC1tZxSoXkKZ/4MY7VQMhzGhGdjSPgjYPqtCvx7snemVPVXcsmLsgVh6b4d8fXOWLSTZEb6wAAQB0q1Ugw5O0ogAAAABJRU5ErkJggg==" alt="4MY7VQMhzGhGdjSPgjYPqtCvx7snemVPVXcsmLsg" /> 的可重集合aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 共价大爷的旅行路线是这样确定的每次他会选择aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 中的某一对点aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAATCAIAAABgP6gTAAADzUlEQVR4nGP5//8/w+AALFhF/707u/OegpuJMDPVLfx+e8dJDicHWTainPLr3vIpl4zLjKnvDiDgVNL73D77bEGWMQ8jIaf8fbah76pDWzQHLRwCBMxS7sF/8xff0ctUZcXvlF+3l63g9FvCRyOHgACbqrdu87zzCa1mnPic8vvB1l3cLqlcNHQJ0FJpK5ULK65+NzNBdguaU/5/vLD/p6E/bV3CwMAhb8x26ujzPyZKSPajOeXnk/Mv+K1EkSPx37tjE7JiijcoLX2wK0ri791prgZNytvvzrXhxmXRrwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpWE5gUNS/uvaBz8YlHhwOuXPu8e/RfhRBJmErAqnTji8LXjK5qfhSew3r/716623wOkOIGBTCGuoXT3b58StL//12BnZFFwdFKd+0hREypHMfGIMz198+8+AlI3QnPLvx+d/HGxouYyBUdipMFzIafKshffO79KaMS9KDntxhACcqvbKf7uOP/gZIszx8+7m/aLZS0yQY52JjZvl58cf/4COwuUUoLXABINpNI9ZdpLsnJbeoDMns7S50J2KCVjEDE2EXpy68fG/4ZcdrZuMWvaqoZVpmJagOYWJg5fpx28MZf/eHF15nJmT4e3z7wyE3QECHMr2aoxbj91/r7ez+0PGMjt+VG3/fn37wy7KwYTHKazCcmxvP/5B1fbuQG3sdIn+rZPz9IomHGi39hEi7BwmAW0rybf79i14vsu2aTdGhP799IpBwhw1eNHUsMkYSX28/fo3Az80E/3/dKIhsPJf2448Q97XeU55sX1bn3vGSkFj+Mf5ahPLaRJ9Z7ZnKaMWnQwcCjaaTN0NXQorLhlhlg0/nj/k1JdjRxFDcwojn4ET58a73xlUICb/vj0jpeWq0Q5tPkYGRlHXfB8Oz4rsVv5JlX6yIAVMvNLS7B8ObL7xHcMpDNzqdoqcz+NbfMSYGNDBz0fnvht4SOMv+FnlvDx/zr3+zd0c7BVWtbIr/8pg7hTwWPkBJR2xqaTNbFsR9VWVkwED/Hz9UjypP0Mdswpm+PP02A3t0DK0wMLIQazK4VF/pp37ZG5DsBr6/+nigrqWU2HTp6miBwmwKlvQ8zptGnpyhcjd3XbJNjUZvWjCLCCYxL3y9Ps33TSJUSdQOf9n4jcrWpAgx42w7ve9Jd13PMvNbrQXHg+cukgKSzvj7/M9G1jSsjFDC1tZxSoXkKZ/4MY7VQMhzGhGdjSPgjYPqtCvx7snemVPVXcsmLsgVh6b4d8fXOWLSTZEb6wAAQB0q1Ugw5O0ogAAAABJRU5ErkJggg==" alt="4MY7VQMhzGhGdjSPgjYPqtCvx7snemVPVXcsmLsg" /> 并从aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA8UlEQVR4nGP5//8/AymAhSTVw1TDv3fHJmTFFG9QWvpgV5TE37vTXA2alLffnWvDjUMDk5BV4dQJh7cFT9n8NDyJ/ebVv3699RbcCAVYnMQo7FQYLuQ0edbCe+d3ac2YFyWHrAirH3jMspNk57T0Bp05maXNxYjXD2B/vDm68jgzJ8Pb598ZGNElMTT8e3egNna6RP/WyXl6RRMOtFv7CDHi1vD/04mGwMp/bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDmY2RgFHXN9+HwrMhu5Z9U6SfLilUDq1rZlX9lUA6jgMfKD5gpeRCmJQCP91VPbewhRAAAAABJRU5ErkJggg==" alt="bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDm" /> 出发沿着唯一路径到达aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABIAAAASCAIAAADZrBkAAAABFUlEQVR4nGP5//8/A+mAhQw9I07brwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpZnxaGNTCGuoXT3b58StL//12BnZFFwdFKd+0hRkRlaE1ZGcqvbKf7uOP/gZIszx8+7m/aLZS0y4CPuNRczQROjFqRsf/xt+2dG6yahlrxobIb+BAIeyvRrj1mP33+vt7P6QscyOnxHdYKzamAS0rSTf7tu34Pku26bdcpiKcEQAh4KNJlN3Q5fCiktGXFjkccUbt7qdIufz+BYfMSZs0ri0/Xz9UjypP0OdDbs0dm2/bi/oeZ02DTMosGr7fW9J9x3PcrMb7YXHA6cukmLGoQlN26/Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAABJRU5ErkJggg==" alt="Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAAB" /> 。

小L是共价大爷的脑残粉为了见到共价大爷的尊容小L决定守在这张图的某条边上等待共价大爷的到来。为了保证一定能见到他显然小L必须选择共价大爷一定会经过的边——也就是所有共价大爷可能选择的路径都经过的边

现在小L想知道如果他守在某一条边是否一定能见到共价大爷。

然而长沙市总是不断的施工也就是说可能某个时刻某条边会断开同时这个时刻一定也有某条新边会出现且任意时刻图都满足任意两点间均存在恰好一条路径的条件。注意断开的边有可能和加入的新边连接着相同的两个端点。共价大爷的兴趣也会不断变化所以aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" />也会不断加入新点对或者删除原有的点对。当然L也有可能在任何时候向你提出守在某一条边是否一定能见到共价大爷的问题。你能回答小L的所有问题吗

【输入格式】

从文件travel.in 中读入数据。

输入的第一行包含一个整数aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABUAAAASCAIAAAA7cAJ5AAABsElEQVR4nGP5//8/AwWAhRLNxOv/+/rQtKaGuinHbbe92OTJj0//p4Pp+r5nk48drdFhhwsyi9qlpVlPnP7MXJGTgP1sIhpGpn+V+ZjRxL8/OPOUTc1Qko2Afg7twrV7MX3w68Wl+3/kYtCsR9P/5/munvzUytWiMx+dTJNlZvj34dyChqZV95jYv90/c+gmq4eRFBs+/SySLnEeEtV7NTWFmBn+fzxSYRtwOHLHzn4Tvl9XG3T0l5uhW4/h/h8PTz1kkE+Q52D4droxpv9P/sViEz5GBoZvd048ZlPDsB5d/7+Pty6+4dfREmb+fHLygofqVZGq4Ej4+ejkrd+yiRjWo+v/+ejUg//y0fLsv56dOPNe0NRUkhUk/P/LnZNP2FQxrUfT/+/TrQuvebW0RVj+3/vykwGetH/cP3Lrj1wqpvVo+n8+PA20PkyBg4FN2kybs21L/8or6o5vVzeXzHrC5mgsjWE9qv7/n++cf/7v5Z7p88wqUjz6Jod7ZiXr6Vvn9hTbic8/c23hoitOuTp40h+jWNThf1EwnlDyijvJK6Cc2P+9GHZjup90MND6AZdAqS9IanYUAAAAAElFTkSuQmCC" alt="c23hoitOuTp40h+jWNThf1EwnlDyijvJK6Cc2P+9" /> 表示测试数据编号如第一组数据的aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACoAAAASCAIAAACiiNvMAAACT0lEQVR4nGP5//8/w8ABlgG0m3jr/74+NK2poW7KcdttLzZ58tPQ+k8H0/V9zyYfO1qjww4XZBa1S0uznjj9mbkiJ4k2/H51ZHpxznSOyWdm23ITtp5NRMPI9K8yHzOa+PcHZ56yqRlKshFv87/3J2fWdW+//+jAxVdBWFVgWs+hXbh2L6bCXy8u3f8jF0Oa5zmUw3tWpzzpN9rail0BqvV/nu/qyU+tXC0689HJNFlmhn8fzi1oaFp1j4n92/0zh26yehhJkeB5BiZOESFg6ONRgWo9i6RLnIdE9V5NTSFmhv8fj1TYBhyO3LGz34Tv19UGHf3lZjDPf9kXIeW88jNWI5ldN7/d5UNc8kQP/B8PTz1kkE+Q52D4droxpv9P/sViEz5GBoZvd048ZlODe57HacWn/yuIsoEU6/99vHXxDb+OljDz55OTFzxUr4pUBSf/n49O3votm0hysifR+p+PTj34Lx8tz/7r2Ykz7wVNTSVZQcL/v9w5+YRNlbSYJ936f59uXXjNq6UtwvL/3pefDPDy+Mf9I7f+yKUiPP9lf5Ss0/IPWI1k89jyars3OXH/8+FpoOfDFDgY2KTNtDnbtvSvvKLu+HZ1c8msJ2yOxtJwz/M4Lnv/fxlRNhBv/f/Pd84///dyz/R5ZhUpHn2Twz2zkvX0rXN7iu3E55+5tnDRFadcHRKi//fjzROm7Lx2/cAthnfv6tMyDdQsk0vitJHKPhTrGcWiDv+LgvGEklfcSYal7tj/vaT7jVXWt7TTF8iYj0vF0Kjxhqn1ALBn5DxDvw2sAAAAAElFTkSuQmCC" alt="vaT7jVXWt7TTF8iYj0vF0Kjxhqn1ALBn5DxDvw2s" /> 样例数据的aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABUAAAASCAIAAAA7cAJ5AAABsElEQVR4nGP5//8/AwWAhRLNxOv/+/rQtKaGuinHbbe92OTJj0//p4Pp+r5nk48drdFhhwsyi9qlpVlPnP7MXJGTgP1sIhpGpn+V+ZjRxL8/OPOUTc1Qko2Afg7twrV7MX3w68Wl+3/kYtCsR9P/5/munvzUytWiMx+dTJNlZvj34dyChqZV95jYv90/c+gmq4eRFBs+/SySLnEeEtV7NTWFmBn+fzxSYRtwOHLHzn4Tvl9XG3T0l5uhW4/h/h8PTz1kkE+Q52D4droxpv9P/sViEz5GBoZvd048ZlPDsB5d/7+Pty6+4dfREmb+fHLygofqVZGq4Ej4+ejkrd+yiRjWo+v/+ejUg//y0fLsv56dOPNe0NRUkhUk/P/LnZNP2FQxrUfT/+/TrQuvebW0RVj+3/vykwGetH/cP3Lrj1wqpvVo+n8+PA20PkyBg4FN2kybs21L/8or6o5vVzeXzHrC5mgsjWE9qv7/n++cf/7v5Z7p88wqUjz6Jod7ZiXr6Vvn9hTbic8/c23hoitOuTp40h+jWNThf1EwnlDyijvJK6Cc2P+9GHZjup90MND6AZdAqS9IanYUAAAAAElFTkSuQmCC" alt="c23hoitOuTp40h+jWNThf1EwnlDyijvJK6Cc2P+9" /> 可以忽略。

输入的第二行包含两个整数aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACMAAAASCAIAAABenfAGAAACfUlEQVR4nGP5//8/A10AC32sGbVpaNr0782+hqiI5j0aiy9W3a7M6996m8W2bf/OSn1O7Jr/vT3QGBnetEdl/unSayU5Ew7+cug7sNr3UnVM/owz7MHzjiyNlYNbgGITk4hjToJ6296n8xv3p3aeelzbpGsxc9nNQn0DDqw2MQnb56Zqte19tGzC9dLFF3zb9OxaslOv+uVtuOiSphI87eDE6FgJJmw2MTD8eHTq/l9h5+IZ7V4iTD/OszAx84rxMOMOkp+PTt37w2+Z01fuKvrj+L9/DMyKKV0FNoKfdzD8Z+Xn52BCKEW16f+XO+dfctvG2IoAlfz/ev/cc041XXFWnBb9/3L3zHMep2RHUSaGf59uX3oj6B5vLcjI8Pv5hds/pQIVkEMd1aafj07f/yfvLQ8OrJ9PTt/9K5uhgD3kIOofn773T94LrOTHw5P3GRRiwOzvD04+YlYylmHHZRPQiWefc6obSIB98e3u6WfsavoSeLz09c6Z5xzqYCX/Pt08/5pXS0sYGNa/X1y4+UPSV4kLWTGKTUAn3v8n5yHPCeGcufdHLgXJSz/OV5tYTpPoO7M9S5kVEgRn7v2VywQr+fnw1IP/8pEQ7wG9xKRkIovsJRSb/n8FeolDzUASbMzXe6cf/3t7YvmWB9VBCmwgESZeaWn2Dwc23/gOsQmo/vQzDjWol26df8WrpSMCNBAYSze//vm3dckRhxxbUWYsNjEKh+z7FQLjCQXu/o1azLOppM1sWxH1VZUTUz2TeOzRP7EQNqta2dX/ZehBTXwZ8f/TxQV1LafCpk9TxR1zeAAJNjHxmxUtSJDjZiTHHlJsYuJR0OYhzxIwAABCrgV9gIQgUgAAAABJRU5ErkJggg==" alt="TxQV1LafCpk9TxR1zeAAJNjHxmxUtSJDjZiTHHlJ" /> 分别表示图中的点数以及接下来会发生的事件数事件的定义下文中会有描述。初始时aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 为空。

接下来aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACUAAAASCAIAAABTg4BBAAABjElEQVR4nGP5//8/Ax0BCz0tGzb2/X51ZHpxznSOyWdm23LT1r5/70/OrOvefv/RgYuvgjClqe8/DuXwntUpT/qNtrZikUWx79+bfQ1REc17NBZfrLpdmde/9TaLbdv+nZX6nMRbx8QpIgQMUFzSKPYxiTjmJKi37X06v3F/auepx7VNuhYzl90s1DfgIN5C/AAtPH88OnX/r7Bz8Yx2LxGmH+dZmJh5xXiYqWUZhn3/v9w5/5LbNsZWhAnI+Xr/3HNONV1xVqDM97P1/mkbX/3FYgQjv9PUbX1W3FikCNn389Hp+//kveXBwffzyem7f2UzFMAcTuPGXWcbyfAQPvv+f7l79jmnuoEEyEcM3+6efsaupg/hUAug2PfzMdB7ch7ynBDOmXt/5FIUqJZUMOz7/xXoPQ41A0mwj77eO/3439sTy7c8qA5SYCPawN+PN0+YsvPa9QO3GN69q0/LNFCzTC6J04bFLrJ9jMIh+36FwHhCgbt/k1F1sMr6lnb6AhnzsUoPj/J68NgHAFuIkvhkay6OAAAAAElFTkSuQmCC" alt="J68NgHAFuIkvhkay6OAAAAAElFTkSuQmCC" /> 行每行两个正整数aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACIAAAASCAIAAACxX5s4AAACNElEQVR4nGP5//8/A+0BCx3sGLVmSFnz792xCVkxxRuUlj7YFSXx9+40V4Mm5e1359pw4zLh14NVlXEpfU9yL15v1WNn+HWjy0angnHm42PJ0sw4rWESsiqcOuHwtuApm5+GJ7HfvPrXr7feAqcdQMCmENZQu3q2z4lbX/7rsTOyKbg6KE79pCnIjKwIS6AxCjsVhgs5TZ618N75XVoz5kXJEQpZTlV75b9dxx/8DBHm+Hl3837R7CUmXCgqsJrAY5adJDunpTfozMksbS5GApYADREzNBF6cerGx/+GX3a0bjJq2avGhqYCi65/b46uPM7MyfD2+XcGwnaAAIeyvRrj1mP33+vt7P6QscyOH10bhjX/3h2ojZ0u0b91cp5e0YQD7dY+QoStYhLQtpJ8u2/fgue7bJt2YwlkVJH/n040BFb+a9uRZ8j7Os8pL7Zv63PPWClobP44X21iOU2i78z2LGVWNO8o2GgydTd0Kay4ZIQaK1is+X17RkrLVaMd2nyMDIyirvk+HJ4V2a38kyr9ZEHGMvFKS7N/OLD5xncMaxi41e0UOZ/Ht/iIMWHzLoo1rGplV/6VQTmMAh4rP6CU3mwqaTPbVkR9VeXENOfn65fiSf0Z6myYUhjW4AX/P11cUNdyKmz6NFV0rzD8ur2g53XaNMyoJ8MaJn6zogUJctwIo37fW9J9x7Pc7EZ74fHAqYukmHFqJt4aJh4FbR5UoV+Pd0/0yp6q7lgwd0GsPD6jAH0XyDd6J2TfAAAAAElFTkSuQmCC" alt="0yp6q7lgwd0GsPD6jAH0XyDd6J2TfAAAAAElFTkS" /> 表示点aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACIAAAASCAIAAACxX5s4AAADdElEQVR4nGP5//8/A+0BCzUM+fft+dUTB3bvvSWfXhUsx0pVa34/2tDVvf7MtSsXz124/1lU39nNxV31z4+XZw+df/0broqRXcrUTk+IfGsY2QXE1W0jXWx5skq15l3ZHCjCyMDwaW+succeUS1xNiDn3+d7lx/qzr5/iBJrWMQdUnIcfpwrrfzjNtVRGGgsw/93B6ds5y/ac67TgAPo3ds9Zha7cn2lmckMtL8vdnS0rn/0C+jgD2eX3ftrsbw8Yz2TgFmE5sqD4oltWhwgRT9vLpnzxK7bTYyJAdOaf++OTciKKd6gtPTBriiJv3enuRo0KW+/O9eGG0nR70+fOSXl5P59Ojtr1ll2t0IHNWEmBjZJ0XOzTyulz1BlA6n5fnnuoo8ec+yFGBmwWMMkZFU4dcLhbcFTNj8NT2K/efWvX2+9BTeqIg610KKqv89WRfU/ZpDMbmqtNedkYPhzb6J5sU52kDzYyC9nZqz+G7jKgg8awphBwijsVBgu5DR51sJ753dpzZgXJYep6N+HI3VBhfs+AANwanS+y6FpASK3l826b17vIwWMCYb/H45O3cwRscMI5j6sccNjlp0kO6elN+jMySxtLkYMOz6ebA+IP24dIn3jeEGX9rT0kADVM5PfLHjlONFVFBQT/9/um7xHJOGQNgdMCzZr/r05uvI4MyfD2+ffGTDs+PNyV5VP/AGP5VN5C9yNS5MS3Y1vczx1frcg4Jv3QjtBkPp/z7dPPiafOlGNDa4Lw5p/7w7Uxk6X6N86OU+vaMKBdmsfIYRV/9/vSjeLuJG4eWc5/wTDJzYd7hKsIpLd04HZpYYxeIM5L9ghjzZOvaiVtUgByWxUa/5/OtEQWPmvbUeeIe/rPKe82L6tzz1jwcENBozc6hGzT1q7qjKeLVr03nWmAzy7bHrDHbCpu3EHkPflwpwbJj0+0swMOKz5fXtGSstVox3afIwMjKKu+T4cnhXZrfyTKv1koQUVm7yrG5D6cnjmqt/+y60EwGH0atfkvWxWviwvHj0CmvF014ZPjpsg2QW7NaxqZVf+lcFcLuCx8gPW0vv/h2PTNrGFbTPhAfO+3LrAFTpx7swoWaBhf1/v65G64eEkhBqp5JQCjNxmPadPCMlyQnh8th0bbGFyzKJO5R1OGFrIKmxYBaTlSNNBlfqGMAAACmlap7QzR6UAAAAASUVORK5CYII=" alt="v65G64eEkhBqp5JQCjNxmPadPCMlyQnh8th0bbGF" /> 点aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABIAAAASCAIAAADZrBkAAAABFUlEQVR4nGP5//8/A+mAhQw9I07brwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpZnxaGNTCGuoXT3b58StL//12BnZFFwdFKd+0hRkRlaE1ZGcqvbKf7uOP/gZIszx8+7m/aLZS0y4CPuNRczQROjFqRsf/xt+2dG6yahlrxobIb+BAIeyvRrj1mP33+vt7P6QscyOnxHdYKzamAS0rSTf7tu34Pku26bdcpiKcEQAh4KNJlN3Q5fCiktGXFjkccUbt7qdIufz+BYfMSZs0ri0/Xz9UjypP0OdDbs0dm2/bi/oeZ02DTMosGr7fW9J9x3PcrMb7YXHA6cukmLGoQlN26/Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAABJRU5ErkJggg==" alt="Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAAB" /> 之间有一条无向边。

接下来aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABMAAAASCAIAAAA2bnI+AAABWUlEQVR4nGP5//8/A1mAhTxtI1Xnv7cHGiPDm/aozD9deq0kZ8LBXw59B1b7XqqOyZ9xhj143pGlsXIsWHUyCdvnpmq17X20bML10sUXfNv07FqyU6/65W246JKmEjzt4MToWAkm7K79+ejUvT/8ljl95a6iP47/+8fArJjSVWAj+HkHw39Wfn4OJoRSVJ3/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTpwh9PPx6Xv/5L0UOIDsHw9P3mdQiAGzvz84+YhZyViGHZfO/1/vnHnOoa4vwQoMrU83z7/m1dISZmZg+P3iws0fkr5KXDjD9uejM/f+ymWCrfn58NSD//KREOuBVjIpmciy49L5/+vd08841KBW3jr/ildLRwSoAOjLm1///Nu65IhDjq0oMxadjMIh+36FQNhM4rFH/8RC2KxqZVf/lzGggQFPfSQBAHxNjXJtBL4HAAAAAElFTkSuQmCC" alt="lzGggQFPfSQBAHxNjXJtBL4HAAAAAElFTkSuQmCC" /> 行每行描述一个事件每行的第一个数aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACMAAAASCAIAAABenfAGAAADUElEQVR4nGP5//8/A10AC32sGTk2/bi9acd/twA1Dhrb9P1iV1TVxxmuAdS1B82mPy/2TshPqD/zWb/E0+Dhl/+vz37Ou3i9VY+d4deNLhudCsaZt+d8KXIv2CQ9aX/hndriqUc+K4f2bVqUpg71/993J2ZUtu96z/j6zGWumHmrGuyFmLDaxCJh663HXX4qZuGOdn32z7tDpX1O3PryX4+dkU3B1UFx6idNSR21GPWiTZc2bvhat+hc8p4027S8gvCgbcEijAz/3u0vsYu8nHlwS7bal9WO4mFV27IPx4gzYbMJGHb3Tz5iVjaVZQeyOVXtlf92HX/wM0SY4+fdzftFs5eYcP28duY+g1r+pK5ULTYGhqgSv7ItR88+/RUswv71VGP85P95l1PVOf5/PnvkHpNarA4/E5I3UCz69ezcrZ8yQcrcYCkxQxOhF6dufPxv+GVH6yajlr1qbAzv7597zqllLsMG1cHIyMDBxwE08PPJyQsfa1b7cF/fOnF6//LnCRv31hggJypUm0BeYlE2AXuJgYFD2V6Nceux++/1dnZ/yFhmx8/I8PPp2Xt/5TOUOCHx+vL8xfcCRuZSrAy/758+/5Gd78XBfbc1Heq35ElyMOJLEb+enb/9UyoQ4iUGBiYBbSvJt/v2LXi+y7ZptxwL2Clnn3FrG0qwguR/P9iw8IZ8wmxzXqDWPz//MHAo+SQmOPIwYAWoae/Dkw//uYW5mP7//vGXhYOFQ8FGk6m7oUthxSUjLrBTnp6/+1c+C+Sl/18vT03t+JW9us4EJMUmY2MhVL997u7ntoGSjJ9ublt8SCImxZSfEbtNnJphoerzysz1dkbXzOyNVmLjVrdT5Hwe3+IjBona7w/PPPl9ozPIfb8yz8+fkqGbD2eYC0Kk+Ox7VlQ/T4mSFRRW0TJ0T6tv8OJHCUAUmxgFHCdf/zkZIfDz9UvxpP4MdWj8/3p+/vZfg77jp3MUMMsWZjHXlt0PW7AHHbpNaODX7QU9r9Om2cHd9uPB6adsimrCZBWWWDT9vrek+45nudmN9sLjgVMXSTHDJV5cuv1DMkyanRyLsNn06/HuiV7ZU9UdC+YuiJWHKfjzdFtn9cxrf15samnW6agLlmcl0SYAxkBVx0WjrT8AAAAASUVORK5CYII=" alt="HuiV7ZU9UdC+YuiJWHKfjzdFtn9cxrf15samnW6a" /> 表示事件的类型。

若aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADgAAAASCAIAAACB04oZAAAD90lEQVR4nGP5//8/w1AALAPtAGLBqEPJAL9fHZlenDOdY/KZ2bbc6JJYHPrj9qYd/90C1Djo4Tgo+Pf+5My67u33Hx24+CoIqwoMh36/2BVV9XGGawCt3YYKOJTDe1anPOk32tqKXQGKQ/+82DshP6H+zGf9Ek+Dh1/+vz77Oe/i9VY9doZfN7psdCoYZ96e86XIvWCT9KT9hXdqi6ce+awc2rdpUZo6NPT/vjsxo7J913vG12cuc8XMW9VgL8RElDuZOEWEgHGPRwWKQ1kkbL31uMtPxSzc0a7P/nl3qLTPiVtf/uuxM7IpuDooTv2kKamjFqNetOnSxg1f6xadS96TZpuWVxAetC1YhJHh37v9JXaRlzMPbslW+7LaUTysalv24RjuAxFSzis/Y7Wc2XXz210+/ER5BS3qv98/+YhZ2VSWHcjmVLVX/tt1/MHPEGGOn3c37xfNXmLC9fPamfsMavmTulK12BgYokr8yrYcPfv0V7AI+9dTjfGT/+ddTlXn+P/57JF7TGqxOvxMDBxOKz79X0GUW0hw6K9n5279lAlSBuc5FjFDE6EXp258/G/4ZUfrJqOWvWpsDO/vn3vOqWUuwwbVwcjIwMHHAYzfzycnL3ysWe3DfX3rxOn9y58nbNxbY0DF/IjqUFCAsiibgAMUlMDt1Ri3Hrv/Xm9n94eMZXb8jAw/n56991c+Q4kTrODPy/MX3wsYmUuxMvy+f/r8R3a+Fwf33dZ0qN+SJ8nBSD1HYjj017Pzt39KBSpDCzEmAW0rybf79i14vsu2abccC9gnZ59xaxtKsILkfz/YsPCGfMJsc16g1j8//zBwKPkkJjjyoFjwZX+UrNPyD1gtZ/PY8mq7Nxlp9M+HJx/+cwtzMf3//eMvCwcLh4KNJlN3Q5fCiktGXGCfPD1/9698FihA/3+9PDW141f26joTkBSbjI2FUP32ubuf2wZKMn66uW3xIYmYFFN+Rh7HZe//LyPKLcQ7lFMzLFR9Xpm53s7ompm90Ups3Op2ipzP41t8xCClzPeHZ578vtEZ5L5fmefnT8nQzYczzAUhUnz2PSuqn6dEyQoKq2gZuqfVN3jxEx/7vx9vnjBl57XrB24xvHtXn5ZpoGaZXBKnjVQ/oTiUUcBx8vWfkxECP1+/FE/qz1CHZp1fz8/f/mvQd/x0jgJmjcYs5tqy+2EL0W5DAayyvqWdvkDGfFwq8NX1v24v6HmdNs0OHjI/Hpx+yqaoJjwQDQQsdv6+t6T7jme52Y32wuOBUxdJMcMlXly6/UMyTJqdng6EASwO/fV490Sv7KnqjgVzF8TKwxT8ebqts3rmtT8vNrU063TUBcuz0tWdDABdq4/Q+HhYTAAAAABJRU5ErkJggg==" alt="Q+HhYTAAAAABJRU5ErkJggg==" /> 那么接下来有四个正整数aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEEAAAASCAIAAACLjyRLAAAD4UlEQVR4nGP5//8/wxAHLAPtACqAUT8MDjDqh8EB0P3w792xCVkxxRuUlj7YFSXx9+40V4Mm5e1359pw4zLh14NVlXEpfU9yL15v1WNn+HWjy0angnHm42PJ0syYqv++PToxLah4k966l7sDhRgYPu0IkPT7tPD53hBhRqzG//9yaW5RbNYcjhmPjydJMzH8utlnr1vybzqS+eh+YBKyKpw64fC24Cmbn4Ynsd+8+tevt94CpweAgE0hrKF29WyfE7e+/NdjZ2RTcHVQnPpJUxCLB4CAWdjUy0iw9LypEtjM388v3Poh6aPMjd0DQMDIo5fUWDxvftGhe9+TpLkZ2OTtLeXkf+kgmY8lLTEKOxWGCzlNnrXw3vldWjPmRckRSnCcqvbKf7uOP/gZIszx8+7m/aLZS0y4cCn+8eD0YxYlE1l2EOf7w1OPmJRMIRxcgElQ11rq4+4Lr/7YKrJ8u7TikFrNOmMk87E6j8csO0l2Tktv0JmTWdpcOIMIYYiYoYnQi1M3Pv43/LKjdZNRy141Nlxqf7+4eOunlL8yJBpeXrj5XdJTmQe/HRwKdtqssw7d+Z4r83Juzeng/haUYMXmh39vjq48zszJ8Pb5dwbCHgBbomyvxrj12P33eju7P2Qss+PHre3Hg1OPmZVNZdignEdMigSiAQh4NBwUv88//ejh+8blOq07tVDVY/jh37sDtbHTJfq3Ts7TK5pwoN3aR4iwP5gEtK0k3+7bt+D5Ltum3fjSHjAabnyX9FEEZYB/b44sO/xFIopQNDAwsEqZG/E2bJ1b9Y+zcrMlL5pyVOv+fzrREFj5r21HniHv6zynvNi+rc89Y6Wg2efH+WoTy2kSfWe2ZymzohrDoWCjydTd0KWw4pIRWk5A1fX3y5uvf//9/vnj/dXNPa1zj7xlVjST48CtHgo4VZ1Uvy+Z/nLuTU8RJnQfovjh9+0ZKS1XjXZo8zEyMIq65vtweFZkt/JPqvSTBZnGxCstzf7hwOYb3zH8wMCtbqfI+Ty+xUcM3QpUXRwa0Rn2systZTb7lE9rjzm0Yuf1eZP3uzY6wZ2G1RYmQT1rbVP/SdHY4hhFiFWt7Mq/MiiHUcBj5QeUNi2bStrMthVRX1U5Mc35+fqleFJ/hjpmXkbTxalXceBdBUzS9V8MAfVQwGnce+UUprWYfsAL/n+6uKCu5VTY9Gmq6JHA8Ov2gp7XadOw5GV8uki1BRcgwQ9M/GZFCxLkkKqj3/eWdN/xLDe70V54PHDqIiks1RoWXaTaQhAQ7wcmHgVtHlShX493T/TKnqruWDB3Qaw8VqOw6CLVFoIAADf0lhSQFypNAAAAAElFTkSuQmCC" alt="TKnqruWDB3Qaw8VqOw6CLVFoIAADf0lhSQFypNAA" /> 表示先删除连接点aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACIAAAASCAIAAACxX5s4AAADdElEQVR4nGP5//8/A+0BCzUM+fft+dUTB3bvvSWfXhUsx0pVa34/2tDVvf7MtSsXz124/1lU39nNxV31z4+XZw+df/0broqRXcrUTk+IfGsY2QXE1W0jXWx5skq15l3ZHCjCyMDwaW+succeUS1xNiDn3+d7lx/qzr5/iBJrWMQdUnIcfpwrrfzjNtVRGGgsw/93B6ds5y/ac67TgAPo3ds9Zha7cn2lmckMtL8vdnS0rn/0C+jgD2eX3ftrsbw8Yz2TgFmE5sqD4oltWhwgRT9vLpnzxK7bTYyJAdOaf++OTciKKd6gtPTBriiJv3enuRo0KW+/O9eGG0nR70+fOSXl5P59Ojtr1ll2t0IHNWEmBjZJ0XOzTyulz1BlA6n5fnnuoo8ec+yFGBmwWMMkZFU4dcLhbcFTNj8NT2K/efWvX2+9BTeqIg610KKqv89WRfU/ZpDMbmqtNedkYPhzb6J5sU52kDzYyC9nZqz+G7jKgg8awphBwijsVBgu5DR51sJ753dpzZgXJYep6N+HI3VBhfs+AANwanS+y6FpASK3l826b17vIwWMCYb/H45O3cwRscMI5j6sccNjlp0kO6elN+jMySxtLkYMOz6ebA+IP24dIn3jeEGX9rT0kADVM5PfLHjlONFVFBQT/9/um7xHJOGQNgdMCzZr/r05uvI4MyfD2+ffGTDs+PNyV5VP/AGP5VN5C9yNS5MS3Y1vczx1frcg4Jv3QjtBkPp/z7dPPiafOlGNDa4Lw5p/7w7Uxk6X6N86OU+vaMKBdmsfIYRV/9/vSjeLuJG4eWc5/wTDJzYd7hKsIpLd04HZpYYxeIM5L9ghjzZOvaiVtUgByWxUa/5/OtEQWPmvbUeeIe/rPKe82L6tzz1jwcENBozc6hGzT1q7qjKeLVr03nWmAzy7bHrDHbCpu3EHkPflwpwbJj0+0swMOKz5fXtGSstVox3afIwMjKKu+T4cnhXZrfyTKv1koQUVm7yrG5D6cnjmqt/+y60EwGH0atfkvWxWviwvHj0CmvF014ZPjpsg2QW7NaxqZVf+lcFcLuCx8gPW0vv/h2PTNrGFbTPhAfO+3LrAFTpx7swoWaBhf1/v65G64eEkhBqp5JQCjNxmPadPCMlyQnh8th0bbGFyzKJO5R1OGFrIKmxYBaTlSNNBlfqGMAAACmlap7QzR6UAAAAASUVORK5CYII=" alt="v65G64eEkhBqp5JQCjNxmPadPCMlyQnh8th0bbGF" /> 点aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABIAAAASCAIAAADZrBkAAAABFUlEQVR4nGP5//8/A+mAhQw9I07brwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpZnxaGNTCGuoXT3b58StL//12BnZFFwdFKd+0hRkRlaE1ZGcqvbKf7uOP/gZIszx8+7m/aLZS0y4CPuNRczQROjFqRsf/xt+2dG6yahlrxobIb+BAIeyvRrj1mP33+vt7P6QscyOnxHdYKzamAS0rSTf7tu34Pku26bdcpiKcEQAh4KNJlN3Q5fCiktGXFjkccUbt7qdIufz+BYfMSZs0ri0/Xz9UjypP0OdDbs0dm2/bi/oeZ02DTMosGr7fW9J9x3PcrMb7YXHA6cukmLGoQlN26/Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAABJRU5ErkJggg==" alt="Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAAB" /> 的无向边保证存在这样的无向边然后加入一条连接点aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACEAAAASCAIAAABaaCA7AAADbUlEQVR4nGP5//8/A40BCzUM+fft+dUTB3bvvSWfXhUsx0o9O34/2tDVvf7MtSsXz124/1lU39nNxV31z4+XZw+df/0broqRXcqUfDsY2QXE1W0jXWx5skq15l3ZHCjCyMDwaW+succeUS1xNiDn3+d7lx/qzr5Pvh0s4g4pOQ4/zpVW/nGb6igMNJPh/7uDU7bzF+0512nAAfTo7R4zi125vtJk2fH3xY6O1vWPfgGd+uHssnt/LZaXZ6xnEjCL0Fx5UDyxTYsDpOjnzSVznth1u4kxodjx9+3RiWlBxZv01r3cHSgE9PmOAEm/Twuf7w0BOxMOfn/6zCkpJ/fv09lZs86yuxU6qAkzMbBJip6bfVopfYYqG0jN98tzF330mGMvxIga58zCpl5GgqXnTZW4wUY9v3Drh6SPMjeKBUDAoRZaVPX32aqo/scMktlNrbXmnAwMf+5NNC/WyQ6SBxv55cyM1X8DV1nwMWCkqx8PTj9mUTKRZQc75eGpR0xKphAOKvj34UhdUOG+D0C/T43Odzk0LUDk9rJZ983rfaSYgdL/PxydupkjYocR2K2odvx+cfHWTyl/ZYg3Xl64+V3SU5kH3Rv/Pp5sD4g/bh0ifeN4QZf2tPSQANUzk98seOU40VWUCWTF232T94gkHNIGRwyaHT8enHrMrGwqwwblPGJSRPfGn5e7qnziD3gsn8pb4G5cmpTobnyb46nzuwUB37wX2gmC3PPv+fbJx+RTJ6qxMWDaAfTGje+SPoqgCPj35siyw18kolC88f/9rnSziBuJm3eW808wfGLT4S7BKiLZPR2YLWoYgzeY84Jd8Wjj1ItaWYsUYGajpqsvb77+/ff754/3Vzf3tM498pZZ0UyOA0kBI7d6xOyT1q6qjGeLFr13nekAzxab3nAHbOpu3AHkfbkw54ZJj480MwM2Ozg0ojPsZ1daymz2KZ/WHnNoxc7r8ybvd210EmGCqmCTd3UDUl8Oz1z123+5lQA4aF7tmryXzcqX5cWjR8CweLprwyfHTcBswYDVDgZOvYoD7ypgPNd/MQzYwP8Px6ZtYgvbZsID5n25dYErdOLcmVGyQMP+vt7XI3XDw0kIKYTJyeeM3GY9p08IyXJCeHy2HRtsYXLMok7lHU6o6skqS1gFpOVIUE6V+oMAAACQHWDDzzY0yQAAAABJRU5ErkJggg==" alt="MQzYwP8Px6ZtYgvbZsID5n25dYErdOLcmVGyQMP+" /> 点aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA4klEQVR4nGP5//8/AymAhSTVw0/D/y+X5hbFZs3hmPH4eJI0E8Ovm332uiX/pj8+lizNjE0DI49eUmPxvPlFh+59T5LmZmCTt7eUk/+lI8iMZAGak5gEda2lPu6+8OqPrSLLt0srDqnVrDPmwucHDgU7bdZZh+58z5V5ObfmdHB/ixyaCnRP82g4KH6ff/rRw/eNy3Vad2qx4/E0GLBKmRvxNmydW/WPs3KzJS8junrMYOVUdVL9vmT6y7k3PUWYMJRj0cAkqGetbeo/KRrd8bg0MHAa9145hVUtDg0EAO01AAB/1EVgg5fa2wAAAABJRU5ErkJggg==" alt="1EVgg5fa2wAAAABJRU5ErkJggg==" /> 的无向边保证操作后的图仍然满足题中所述条件。

若aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADgAAAASCAIAAACB04oZAAAEdklEQVR4nGP5//8/w1AALAPtAGLBqENJAj8udQRHzb7HJiHK9ePNex6b/Ak9KYZ8TMhKsDj0x+1NO/67Bahx0MuZDAy/X9/4k7jtYrE6G8O/9/uytJ1dvsrdWeIhyIjHod8vdkVVfZzhGkA/ZzIwcKjFlakqsoGYTIJm4Q58M/esv/Hdw5ILoQTFoX9e7J2Qn1B/5rN+iafBwy//X5/9nHfxeqseO8OvG102OhWMM2/P+VLkXrBJetL+wju1xVOPfFYO7du0KE0dGvp/352YUdm+6z3j6zOXuWLmrWqwF0KJP1yAVdbJGcH79/c/AxsXKyOKEhSHskjYeutxl5+KWbijXZ/98+5QaZ8Tt77812NnZFNwdVCc+klTUkctRr1o06WNG77WLTqXvCfNNi2vIDxoW7AII8O/d/tL7CIvZx7ckq32ZbWjeFjVtuzDMdwHIqScV37G6j5m181vd/nwowr+fnH+6mcRV391TtwOBUb8/ZOPmJVNZdmBbE5Ve+W/Xccf/AwR5vh5d/N+0ewlJlw/r525z6CWP6krVQsYU1ElfmVbjp59+itYhP3rqcb4yf/zLqeqc/z/fPbIPSa1WB1+JgYOpxWf/q8gJlgh4MvZqdOeu3XW2/CiiqM69Nezc7d+ygQpc4OlxAxNhF6cuvHxv+GXHa2bjFr2qrExvL9/7jmnlrkMG1QHIyMDBx8HMH4/n5y88LFmtQ/39a0Tp/cvf56wcW+NAan58e+rbaVphwNW7kiQR888qHxQgLIom4ADFJjEle3VGLceu/9eb2f3h4xldvyMDD+fnr33Vz5DCRItf16ev/hewMhcipXh9/3T5z+y8704uO+2pkP9ljxJDkYGEsHfVzvLQ3sF+na0uIhgpmwUh/56dv72T6lASIACM6CAtpXk2337FjzfZdu0W44F7JOzz7i1DSVYQfK/H2xYeEM+YbY5MJZ+/fn5h4FDyScxwZEHxYIv+6NknZZ/wOo0No8tr7Z7g9Po78dr8xNWqPdvyDPixepF1Fz/4cmH/9zCXEz/f//4y8LBwqFgo8nU3dClsOKSEbik+PX0/N2/8lmgAP3/9fLU1I5f2avrTEBSbDI2FkL12+fufm4bKMn46ea2xYckYlJM+Rl5HJe9/78Mf1j+frQk1qmVJbdZ6dnBrc/AQswCWnbWStwIN6M4lFMzLFR9Xpm53s7ompm90Ups3Op2ipzP41t8xCBx8f3hmSe/b3QGue9X5vn5UzJ08+EMc0GIFJ99z4rq5ylRsoLCKlqG7mn1DV78xMb+92srN9y98bMgdClCTKPtxsVKdTY4H8WhjAKOk6//nIwQ+Pn6pXhSfwZM/a/n52//Neg7fjpHAbNGYxZzbdn9sIVIt6EAPo/NPwi14fDV9b9uL+h5nTbNDh4yPx6cfsqmqCY8EA0ELHb+vrek+45nudmN9sLjgVMXSTHDJV5cuv1DMkyanZ4OhAEsDv31ePdEr+yp6o4FcxfEwsuzP0+3dVbPvPbnxaaWZp2OumB5Vrq6kwEAHOO+qqvjYcAAAAAASUVORK5CYII=" alt="NPwi14fDV9b9uL+h5nTbNDh4yPx6cfsqmqCY8EA0" /> 那么接下来有两个正整数aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACIAAAASCAIAAACxX5s4AAACNElEQVR4nGP5//8/A+0BCx3sGLVmSFnz792xCVkxxRuUlj7YFSXx9+40V4Mm5e1359pw4zLh14NVlXEpfU9yL15v1WNn+HWjy0angnHm42PJ0sw4rWESsiqcOuHwtuApm5+GJ7HfvPrXr7feAqcdQMCmENZQu3q2z4lbX/7rsTOyKbg6KE79pCnIjKwIS6AxCjsVhgs5TZ618N75XVoz5kXJEQpZTlV75b9dxx/8DBHm+Hl3837R7CUmXCgqsJrAY5adJDunpTfozMksbS5GApYADREzNBF6cerGx/+GX3a0bjJq2avGhqYCi65/b46uPM7MyfD2+XcGwnaAAIeyvRrj1mP33+vt7P6QscyOH10bhjX/3h2ojZ0u0b91cp5e0YQD7dY+QoStYhLQtpJ8u2/fgue7bJt2YwlkVJH/n040BFb+a9uRZ8j7Os8pL7Zv63PPWClobP44X21iOU2i78z2LGVWNO8o2GgydTd0Kay4ZIQaK1is+X17RkrLVaMd2nyMDIyirvk+HJ4V2a38kyr9ZEHGMvFKS7N/OLD5xncMaxi41e0UOZ/Ht/iIMWHzLoo1rGplV/6VQTmMAh4rP6CU3mwqaTPbVkR9VeXENOfn65fiSf0Z6myYUhjW4AX/P11cUNdyKmz6NFV0rzD8ur2g53XaNMyoJ8MaJn6zogUJctwIo37fW9J9x7Pc7EZ74fHAqYukmHFqJt4aJh4FbR5UoV+Pd0/0yp6q7lgwd0GsPD6jAH0XyDd6J2TfAAAAAElFTkSuQmCC" alt="0yp6q7lgwd0GsPD6jAH0XyDd6J2TfAAAAAElFTkS" /> 表示在aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 中加入点对aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAATCAIAAABgP6gTAAADzUlEQVR4nGP5//8/w+AALFhF/707u/OegpuJMDPVLfx+e8dJDicHWTainPLr3vIpl4zLjKnvDiDgVNL73D77bEGWMQ8jIaf8fbah76pDWzQHLRwCBMxS7sF/8xff0ctUZcXvlF+3l63g9FvCRyOHgACbqrdu87zzCa1mnPic8vvB1l3cLqlcNHQJ0FJpK5ULK65+NzNBdguaU/5/vLD/p6E/bV3CwMAhb8x26ujzPyZKSPajOeXnk/Mv+K1EkSPx37tjE7JiijcoLX2wK0ri791prgZNytvvzrXhxmXRrwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpWE5gUNS/uvaBz8YlHhwOuXPu8e/RfhRBJmErAqnTji8LXjK5qfhSew3r/716623wOkOIGBTCGuoXT3b58StL//12BnZFFwdFKd+0hREypHMfGIMz198+8+AlI3QnPLvx+d/HGxouYyBUdipMFzIafKshffO79KaMS9KDntxhACcqvbKf7uOP/gZIszx8+7m/aLZS0yQY52JjZvl58cf/4COwuUUoLXABINpNI9ZdpLsnJbeoDMns7S50J2KCVjEDE2EXpy68fG/4ZcdrZuMWvaqoZVpmJagOYWJg5fpx28MZf/eHF15nJmT4e3z7wyE3QECHMr2aoxbj91/r7ez+0PGMjt+VG3/fn37wy7KwYTHKazCcmxvP/5B1fbuQG3sdIn+rZPz9IomHGi39hEi7BwmAW0rybf79i14vsu2aTdGhP799IpBwhw1eNHUsMkYSX28/fo3Az80E/3/dKIhsPJf2448Q97XeU55sX1bn3vGSkFj+Mf5ahPLaRJ9Z7ZnKaMWnQwcCjaaTN0NXQorLhlhlg0/nj/k1JdjRxFDcwojn4ET58a73xlUICb/vj0jpeWq0Q5tPkYGRlHXfB8Oz4rsVv5JlX6yIAVMvNLS7B8ObL7xHcMpDNzqdoqcz+NbfMSYGNDBz0fnvht4SOMv+FnlvDx/zr3+zd0c7BVWtbIr/8pg7hTwWPkBJR2xqaTNbFsR9VWVkwED/Hz9UjypP0Mdswpm+PP02A3t0DK0wMLIQazK4VF/pp37ZG5DsBr6/+nigrqWU2HTp6miBwmwKlvQ8zptGnpyhcjd3XbJNjUZvWjCLCCYxL3y9Ps33TSJUSdQOf9n4jcrWpAgx42w7ve9Jd13PMvNbrQXHg+cukgKSzvj7/M9G1jSsjFDC1tZxSoXkKZ/4MY7VQMhzGhGdjSPgjYPqtCvx7snemVPVXcsmLsgVh6b4d8fXOWLSTZEb6wAAQB0q1Ugw5O0ogAAAABJRU5ErkJggg==" alt="4MY7VQMhzGhGdjSPgjYPqtCvx7snemVPVXcsmLsg" /> 。

若aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADgAAAASCAIAAACB04oZAAAEjUlEQVR4nGP5//8/w1AALAPtAGLBqENJAj+v9QUHT7rJLinJ8/v1axbj9N6J+dbCzMhKsDj0x+1NO/67Bahx0MuZDAx/3t7+FbHxcr0+B8P/T0eLdW08UpXvr/UXYcTj0O8Xu6KqPs5wDaCfMxkYWGV9MyPUwSHDyGcQ4CDYv2vnne/+IlwIJSgO/fNi74T8hPozn/VLPA0efvn/+uznvIvXW/XYGX7d6LLRqWCceXvOlyL3gk3Sk/YX3qktnnrks3Jo36ZFaerQ0P/77sSMyvZd7xlfn7nMFTNvVYO9EBMxDmVT8AqEc/7/+fmXgUeMFyXmUR3KImHrrcddfipm4Y52ffbPu0OlfU7c+vJfj52RTcHVQXHqJ01JHbUY9aJNlzZu+Fq36FzynjTbtLyC8KBtwcBY+vduf4ld5OXMg1uy1b6sdhQPq9qWfTiG+0CElPPKz1jdx+y6+e0uH34UsV8PN0/bx+zWGq/GjtuhwIi/f/IRs7KpLEgRp6q98t+u4w9+hghz/Ly7eb9o9hITrp/XztxnUMuf1JWqxcbAEFXiV7bl6Nmnv4JF2L+eaoyf/D/vcqo6x//PZ4/cY1KL1eFnYuBwWvHp/woiQvXf680p3mX7bt/7opE5e0mMAiuqNKpDfz07d+unTJAyN1hKzNBE6MWpGx//G37Z0brJqGWvGhvD+/vnnnNqmcuwQXUwMjJw8HEA4/fzyckLH2tW+3Bf3zpxev/y5wkb99YYkJIfmUR9553yZfj//e7qbCcd4+O7j3fb8CNyE6pDQQHKomwiCwl1DmV7Ncatx+6/19vZ/SFjmR1Q28+nZ+/9lc9Q4gQr+PPy/MX3AkbmUqwMv++fPv+Rne/FwX23NR3qt+RJcjAykAUYOZUDK7Mb1eo6jtRu8UYkCxSH/np2/vZPqUBIgAL9KKBtJfl2374Fz3fZNu2WYwH75Owzbm1DCXC8/H6wYeEN+YTZ5rxArX9+/mHgUPJJTHDkQbH4y/4oWaflH7A6is1jy6vtQMf8frxr2xcbf014JgfG099ff1DqdtRc/+HJh//cwlxM/3//+MvCwcKhYKPJ1N3QpbDikhHYkF9Pz9/9K58FCtD/Xy9PTe34lb26zgQkxSZjYyFUv33u7ue2gZKMn25uW3xIIibFlJ+Rx3HZ+//L8Ifin5d7pyzlcem3AoXQ/88Xliy8zuddD/I/DodyaoaFqs8rM9fbGV0zszdaiY1b3U6R83l8i48YpJT5/vDMk983OoPc9yvz/PwpGbr5cIa5IESKz75nRfXzlChZQWEVLUP3tPoGL35iY59VTFfiULyJqZSMIOuvD68+CznNPdwaIoG7ZmIUcJx8/edkhMDP1y/Fk/oz1KFZ59fz87f/GvQdP52jgFmjMYu5tux+2EKk21AAi1zM4rMxBNTgkft1e0HP67RpdvCQ+fHg9FM2RTXhgWggYLHz970l3Xc8y81utBceD5y6SAoeA79fXLr9QzJMmh1TD+0BFof+erx7olf2VHXHgrkLYuVhCv483dZZPfPanxebWpp1OuqC5VkxddISAACkcciWu0ExvgAAAABJRU5ErkJggg==" alt="GvQdP52jgFmjMYu5tux+2EKk21AAi1zM4rMxBNTg" /> 那么接下来有一个正整数aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA8UlEQVR4nGP5//8/AymAhSTVw1TDv3fHJmTFFG9QWvpgV5TE37vTXA2alLffnWvDjUMDk5BV4dQJh7cFT9n8NDyJ/ebVv3699RbcCAVYnMQo7FQYLuQ0edbCe+d3ac2YFyWHrAirH3jMspNk57T0Bp05maXNxYjXD2B/vDm68jgzJ8Pb598ZGNElMTT8e3egNna6RP/WyXl6RRMOtFv7CDHi1vD/04mGwMp/bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDmY2RgFHXN9+HwrMhu5Z9U6SfLilUDq1rZlX9lUA6jgMfKD5gpeRCmJQCP91VPbewhRAAAAABJRU5ErkJggg==" alt="bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDm" /> 表示删除第aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA8UlEQVR4nGP5//8/AymAhSTVw1TDv3fHJmTFFG9QWvpgV5TE37vTXA2alLffnWvDjUMDk5BV4dQJh7cFT9n8NDyJ/ebVv3699RbcCAVYnMQo7FQYLuQ0edbCe+d3ac2YFyWHrAirH3jMspNk57T0Bp05maXNxYjXD2B/vDm68jgzJ8Pb598ZGNElMTT8e3egNna6RP/WyXl6RRMOtFv7CDHi1vD/04mGwMp/bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDmY2RgFHXN9+HwrMhu5Z9U6SfLilUDq1rZlX9lUA6jgMfKD5gpeRCmJQCP91VPbewhRAAAAABJRU5ErkJggg==" alt="bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDm" /> 个加入aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 中的点对即在第aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA8UlEQVR4nGP5//8/AymAhSTVw1TDv3fHJmTFFG9QWvpgV5TE37vTXA2alLffnWvDjUMDk5BV4dQJh7cFT9n8NDyJ/ebVv3699RbcCAVYnMQo7FQYLuQ0edbCe+d3ac2YFyWHrAirH3jMspNk57T0Bp05maXNxYjXD2B/vDm68jgzJ8Pb598ZGNElMTT8e3egNna6RP/WyXl6RRMOtFv7CDHi1vD/04mGwMp/bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDmY2RgFHXN9+HwrMhu5Z9U6SfLilUDq1rZlX9lUA6jgMfKD5gpeRCmJQCP91VPbewhRAAAAABJRU5ErkJggg==" alt="bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDm" /> 个aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADgAAAASCAIAAACB04oZAAAEdklEQVR4nGP5//8/w1AALAPtAGLBqENJAj8udQRHzb7HJiHK9ePNex6b/Ak9KYZ8TMhKsDj0x+1NO/67Bahx0MuZDAy/X9/4k7jtYrE6G8O/9/uytJ1dvsrdWeIhyIjHod8vdkVVfZzhGkA/ZzIwcKjFlakqsoGYTIJm4Q58M/esv/Hdw5ILoQTFoX9e7J2Qn1B/5rN+iafBwy//X5/9nHfxeqseO8OvG102OhWMM2/P+VLkXrBJetL+wju1xVOPfFYO7du0KE0dGvp/352YUdm+6z3j6zOXuWLmrWqwF0KJP1yAVdbJGcH79/c/AxsXKyOKEhSHskjYeutxl5+KWbijXZ/98+5QaZ8Tt77812NnZFNwdVCc+klTUkctRr1o06WNG77WLTqXvCfNNi2vIDxoW7AII8O/d/tL7CIvZx7ckq32ZbWjeFjVtuzDMdwHIqScV37G6j5m181vd/nwowr+fnH+6mcRV391TtwOBUb8/ZOPmJVNZdmBbE5Ve+W/Xccf/AwR5vh5d/N+0ewlJlw/r525z6CWP6krVQsYU1ElfmVbjp59+itYhP3rqcb4yf/zLqeqc/z/fPbIPSa1WB1+JgYOpxWf/q8gJlgh4MvZqdOeu3XW2/CiiqM69Nezc7d+ygQpc4OlxAxNhF6cuvHxv+GXHa2bjFr2qrExvL9/7jmnlrkMG1QHIyMDBx8HMH4/n5y88LFmtQ/39a0Tp/cvf56wcW+NAan58e+rbaVphwNW7kiQR888qHxQgLIom4ADFJjEle3VGLceu/9eb2f3h4xldvyMDD+fnr33Vz5DCRItf16ev/hewMhcipXh9/3T5z+y8704uO+2pkP9ljxJDkYGEsHfVzvLQ3sF+na0uIhgpmwUh/56dv72T6lASIACM6CAtpXk2337FjzfZdu0W44F7JOzz7i1DSVYQfK/H2xYeEM+YbY5MJZ+/fn5h4FDyScxwZEHxYIv+6NknZZ/wOo0No8tr7Z7g9Po78dr8xNWqPdvyDPixepF1Fz/4cmH/9zCXEz/f//4y8LBwqFgo8nU3dClsOKSEbik+PX0/N2/8lmgAP3/9fLU1I5f2avrTEBSbDI2FkL12+fufm4bKMn46ea2xYckYlJM+Rl5HJe9/78Mf1j+frQk1qmVJbdZ6dnBrc/AQswCWnbWStwIN6M4lFMzLFR9Xpm53s7ompm90Ups3Op2ipzP41t8xCBx8f3hmSe/b3QGue9X5vn5UzJ08+EMc0GIFJ99z4rq5ylRsoLCKlqG7mn1DV78xMb+92srN9y98bMgdClCTKPtxsVKdTY4H8WhjAKOk6//nIwQ+Pn6pXhSfwZM/a/n52//Neg7fjpHAbNGYxZzbdn9sIVIt6EAPo/NPwi14fDV9b9uL+h5nTbNDh4yPx6cfsqmqCY8EA0ELHb+vrek+45nudmN9sLjgVMXSTHDJV5cuv1DMkyanZ4OhAEsDv31ePdEr+yp6o4FcxfEwsuzP0+3dVbPvPbnxaaWZp2OumB5Vrq6kwEAHOO+qqvjYcAAAAAASUVORK5CYII=" alt="NPwi14fDV9b9uL+h5nTbNDh4yPx6cfsqmqCY8EA0" /> 的事件中加入aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 中的点对保证这个点对存在且仍然在aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 中。

若aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAASCAIAAABuEeEnAAAESUlEQVR4nGP5//8/wxABLAPtABLAqFspA//ebEvWDX4088VeP35kcSxu/XF7047/bgFqHPRyGyr4+3R1VuKCFz+dMGQw3Pr9YldU1ccZrgH0cBcm+H1vXv4CuVRjhjZMORS3/nmxd0J+Qv2Zz/olngYPv/x/ffZz3sXrrXrsDL9udNnoVDDOvD3nS5F7wSbpSfsL79QWTz3yWTm0b9OiNHVoHPx9d2JGZfuu94yvz1zmipm3qsFeiIkUl/64Njl/m+PEaWIpvVhkUdzKImHrrcddfipm4Y52ffbPu0OlfU7c+vJfj52RTcHVQXHqJ01JHbUY9aJNlzZu+Fq36FzynjTbtLyC8KBtwSKMDP/e7S+xi7yceXBLttqX1Y7iYVXbsg/HcB+IkHJe+Rmr05hdN7/d5QNLk/+/nukoPB06e7Ea+wasytHSwPf7Jx8xK5vKsgPZnKr2yn+7jj/4GSLM8fPu5v2i2UtMuH5eO3OfQS1/UleqFhsDQ1SJX9mWo2ef/goWYf96qjF+8v+8y6nqHP8/nz1yj0ktVoefiYHDacWn/ysIB+n/Dwfryh9nLquVY2F4h10Jqlt/PTt366dMkDI3WErM0EToxakbH/8bftnRusmoZa8aG8P7++eec2qZy7BBdTAyMnDwcQAj+vPJyQsfa1b7cF/fOnF6//LnCRv31hgQnT3/vd5a3vyncrWfODNuRahuBQUri7IJOFgZGDiU7dUYtx67/15vZ/eHjGV2/IwMP5+evfdXPkOJE6zgz8vzF98LGJlLsTL8vn/6/Ed2vhcH993WdKjfkifJwUisO0Hg/YGuWfsOzxKehCTmL8BoMOXB6Wx5mBtR3Prr2fnbP6UCIcHKwMAkoG0l+XbfvgXPd9k27ZZjAXvm7DNubUMJVpD87wcbFt6QT5htzgvU+ufnHwYOJZ/EBEceFFd82R8l67T8A1YXsnlsebXdG5ReBVznnT/z8S9U/OOeZOcKlt4Dc7y1JZEciFoOfHjy4T+3MBfT/98//rJwsHAo2GgydTd0Kay4ZMQF9szT83f/ymeBgvX/18tTUzt+Za+uMwFJscnYWAjVb5+7+7ltoCTjp5vbFh+SiEkx5WfkcVz2/v8yQuHKLKBiYAznvbvPx8DIqmJgoI67LuDUDAtVn1dmrrczumZmb7QSG7e6nSLn8/gWHzFI0fP94Zknv290BrnvV+b5+VMydPPhDHNBiBSffc+K6ucpUbKCwipahu5p9Q1e/CQlA8IAxa2MAo6Tr/+cjBD4+fqleFJ/hjo0J/16fv72X4O+46dzFDDrO2Yx15bdD1uo4SihkEP//xFwKxr4dXtBz+u0aXbw8Pnx4PRTNkU14QFqRGCx9ve9Jd13PMvNbrQXHg+cukgKXor8fnHp9g/JMGl2ejoQCWBx66/Huyd6ZU9VdyyYuyAWXmD8ebqts3rmtT8vNrU063TUBcuz0tWdIAAAX6Cu9Ox59X4AAAAASUVORK5CYII=" alt="Huyd6ZU9VdyyYuyAWXmD8ebqts3rmtT8vNrU063T" /> 那么接下来有两个正整数aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACIAAAASCAIAAACxX5s4AAACNElEQVR4nGP5//8/A+0BCx3sGLVmSFnz792xCVkxxRuUlj7YFSXx9+40V4Mm5e1359pw4zLh14NVlXEpfU9yL15v1WNn+HWjy0angnHm42PJ0sw4rWESsiqcOuHwtuApm5+GJ7HfvPrXr7feAqcdQMCmENZQu3q2z4lbX/7rsTOyKbg6KE79pCnIjKwIS6AxCjsVhgs5TZ618N75XVoz5kXJEQpZTlV75b9dxx/8DBHm+Hl3837R7CUmXCgqsJrAY5adJDunpTfozMksbS5GApYADREzNBF6cerGx/+GX3a0bjJq2avGhqYCi65/b46uPM7MyfD2+XcGwnaAAIeyvRrj1mP33+vt7P6QscyOH10bhjX/3h2ojZ0u0b91cp5e0YQD7dY+QoStYhLQtpJ8u2/fgue7bJt2YwlkVJH/n040BFb+a9uRZ8j7Os8pL7Zv63PPWClobP44X21iOU2i78z2LGVWNO8o2GgydTd0Kay4ZIQaK1is+X17RkrLVaMd2nyMDIyirvk+HJ4V2a38kyr9ZEHGMvFKS7N/OLD5xncMaxi41e0UOZ/Ht/iIMWHzLoo1rGplV/6VQTmMAh4rP6CU3mwqaTPbVkR9VeXENOfn65fiSf0Z6myYUhjW4AX/P11cUNdyKmz6NFV0rzD8ur2g53XaNMyoJ8MaJn6zogUJctwIo37fW9J9x7Pc7EZ74fHAqYukmHFqJt4aJh4FbR5UoV+Pd0/0yp6q7lgwd0GsPD6jAH0XyDd6J2TfAAAAAElFTkSuQmCC" alt="0yp6q7lgwd0GsPD6jAH0XyDd6J2TfAAAAAElFTkS" /> 表示小L询问守在连接点aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACIAAAASCAIAAACxX5s4AAADdElEQVR4nGP5//8/A+0BCzUM+fft+dUTB3bvvSWfXhUsx0pVa34/2tDVvf7MtSsXz124/1lU39nNxV31z4+XZw+df/0broqRXcrUTk+IfGsY2QXE1W0jXWx5skq15l3ZHCjCyMDwaW+succeUS1xNiDn3+d7lx/qzr5/iBJrWMQdUnIcfpwrrfzjNtVRGGgsw/93B6ds5y/ac67TgAPo3ds9Zha7cn2lmckMtL8vdnS0rn/0C+jgD2eX3ftrsbw8Yz2TgFmE5sqD4oltWhwgRT9vLpnzxK7bTYyJAdOaf++OTciKKd6gtPTBriiJv3enuRo0KW+/O9eGG0nR70+fOSXl5P59Ojtr1ll2t0IHNWEmBjZJ0XOzTyulz1BlA6n5fnnuoo8ec+yFGBmwWMMkZFU4dcLhbcFTNj8NT2K/efWvX2+9BTeqIg610KKqv89WRfU/ZpDMbmqtNedkYPhzb6J5sU52kDzYyC9nZqz+G7jKgg8awphBwijsVBgu5DR51sJ753dpzZgXJYep6N+HI3VBhfs+AANwanS+y6FpASK3l826b17vIwWMCYb/H45O3cwRscMI5j6sccNjlp0kO6elN+jMySxtLkYMOz6ebA+IP24dIn3jeEGX9rT0kADVM5PfLHjlONFVFBQT/9/um7xHJOGQNgdMCzZr/r05uvI4MyfD2+ffGTDs+PNyV5VP/AGP5VN5C9yNS5MS3Y1vczx1frcg4Jv3QjtBkPp/z7dPPiafOlGNDa4Lw5p/7w7Uxk6X6N86OU+vaMKBdmsfIYRV/9/vSjeLuJG4eWc5/wTDJzYd7hKsIpLd04HZpYYxeIM5L9ghjzZOvaiVtUgByWxUa/5/OtEQWPmvbUeeIe/rPKe82L6tzz1jwcENBozc6hGzT1q7qjKeLVr03nWmAzy7bHrDHbCpu3EHkPflwpwbJj0+0swMOKz5fXtGSstVox3afIwMjKKu+T4cnhXZrfyTKv1koQUVm7yrG5D6cnjmqt/+y60EwGH0atfkvWxWviwvHj0CmvF014ZPjpsg2QW7NaxqZVf+lcFcLuCx8gPW0vv/h2PTNrGFbTPhAfO+3LrAFTpx7swoWaBhf1/v65G64eEkhBqp5JQCjNxmPadPCMlyQnh8th0bbGFyzKJO5R1OGFrIKmxYBaTlSNNBlfqGMAAACmlap7QzR6UAAAAASUVORK5CYII=" alt="v65G64eEkhBqp5JQCjNxmPadPCMlyQnh8th0bbGF" /> 点aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABIAAAASCAIAAADZrBkAAAABFUlEQVR4nGP5//8/A+mAhQw9I07brwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpZnxaGNTCGuoXT3b58StL//12BnZFFwdFKd+0hRkRlaE1ZGcqvbKf7uOP/gZIszx8+7m/aLZS0y4CPuNRczQROjFqRsf/xt+2dG6yahlrxobIb+BAIeyvRrj1mP33+vt7P6QscyOnxHdYKzamAS0rSTf7tu34Pku26bdcpiKcEQAh4KNJlN3Q5fCiktGXFjkccUbt7qdIufz+BYfMSZs0ri0/Xz9UjypP0OdDbs0dm2/bi/oeZ02DTMosGr7fW9J9x3PcrMb7YXHA6cukmLGoQlN26/Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAABJRU5ErkJggg==" alt="Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAAB" /> 的边上是否一定能见到共价大爷保证存在这样的无向边且此时aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 不为空。

【输出格式】

输出到travel.out中。

对于每个小L的询问输出“YES”或者“NO”均不含引号表示小L一定能或者不一定能见到共价大爷。

【样例输入1】

0

5 7

1 2

1 3

2 4

1 5

2 1 5

1 1 5 2 5

4 2 5

2 1 4

4 2 5

3 1

4 2 4

【样例输出1】

YES

NO

YES

【样例说明1】

最开始将点对aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACgAAAATCAIAAABtIdhUAAADQ0lEQVR4nGP5//8/w0AAFqyi/96d3XlPwc1EmJlC47/f3nGSw8lBlo0oi3/dWz7lknGZMaW2AgGnkt7n9tlnC7KMeRgJWfz32Ya+qw5t0RyUWwsEzFLuwX/zF9/Ry1RlxW/xr9vLVnD6LeFDEfz96sj04pzpHJPPzLblxjD83/P5llJJpxACfBH7ni535IFw2FS9dZvnnU9oNePEZ/HvB1t3cbukciFMfX9yZl339vuPDlx8FYTLX4x8NvVrqi2gbmLkkDFAsoRF2krlwoqr381MkG1Gs/j/xwv7fxr6cyEJcSiH96xOedJvtLUVl70MDKxiJi4eHvzYJTnkjdlOHX3+x0QJyTY0i38+Of+C30oUKTqYOEWEgAGB204iAIek/Ne1D34wKPHgtPjPu8e/Rfix5zF84MuJ+nDf6f+/fHj/W8goKL82x0UaKQcx84kxPH/x7T8DUtJGs+Pfj8//ONjQUj4hwCQRs+tONDsnKyPD/2+3l6faulreOXhlqh0fzBwmNm6Wnx9//AM6AZfFwJQBjGjS7AXqYeGAphtGLtXgitS6ZROnnu6yc0aELKaRaBYzcfAy/fhNUSHKIiDNz/D52ZsfiJD99+vbH3ZRDiY8FrMKy7G9/fiHJJv+v9nVskamLEOLHcz98+HpRwZBbQlORIT9/fSKQcKcCyUG0SxmkzGS+nj79W8GftRyBgN8Opim67JeZ/qpDSkKjB+Or7rzPEVLAWjYv7eHpi96qJKy3ASpoPnx/CGnvhw7igFoFjPyGThxbrz7nUEFZvHvx5snTNl57fqBWwzv3tWnZRqoWSaXxGmzCSnJsb/Zvfba9xRFTgWD/3UuhksVJDl+vn31UzFp04EqUyR7fz46993AQxp/kckq5+X5c+71b+7m0EKEVda3tNMXyJiPqlC3ZFH7lugfqsBUxWrWtv9GG87A+fP02A3t0DIuVFGMVM2qHB71Z9q5T+Y2fOhSSODHnVUN1ScCJ89QJRAlwML/7rZLtqnJ6EU8ZlnBJO6Vp9+/6aZJjDqeCopLO212iBIfE24VEPD3+Z4NLGnZ6hgVMrZCilUuIE3/wI13qgZCuAzmkNJWImQnCHx/cJUvJtkQvTIGAgC8exhISJqlNQAAAABJRU5ErkJggg==" alt="cJUvJtkQvTIGAgC8exhISJqlNQAAAABJRU5ErkJg" /> 加入到aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 中此时点1和点5之间的路径是aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACsAAAASCAIAAABNSrDyAAAB0klEQVR4nGP5//8/w4ACloG1ftC64PerI9OLc6ZzTD4z25abMuP/PZ9vKZV0CiHAF7Hv6XJHHtwu+Pf+5My67u33Hx24+CqIMsuhgJHPpn5NtQXUJ4wcMgacqArQw4BDObxndcqTfqOtrVRxAAMDq5iJi4cHP055NBcwcYoIAaOBSpYTBaiTEn8/P3Xur765DDsWuS8n6sN9p///8uH9byGjoPzaHBdpNuq7gJntzWyf+Mtz5yZrcTMiSzBJxOy6E83OycrI8P/b7eWptq6Wdw5emWrHh1BFsgt+3ZmbXbT26R804b/vHu6aa/z699UdmUqsSOKMLBzQlMfIpRpckVq3bOLU0112zojcQLIL2FSSZ29KRhP8/2F/rjtr6Kal6SjWowMWAWl+hs/P3vz4z8ADDwQqpYPPTIFLVzmpcDGiiv9/s6tljUxZhhYkgfz58PQjg6C2BCeyMuq4gE3W3hmrBOOH46vuPE/RUgDa8+/toemLHqqkLDdBKebQXPD78eYJU3Zeu37gFsO7d/VpmQZqlsklcdrkloyMnAoG/+tcDJcqSHL8fPvqp2LSpgNVpqimobmAVda3tNMXyJhPpp1ogMusbf+NNrxKBmfNNNJcAABPdZj8ivGR5AAAAABJRU5ErkJggg==" alt="+tcDJcqSHL8fPvqp2LSpgNVpqimobmAVda3tNMXy" /> 。

接着将连接点1和点5的边断开加入连接点2和点5的边我们发现图仍然满足题中所述条件且点1和点5之间的路径是aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEYAAAASCAIAAABpUz8yAAACw0lEQVR4nGP5//8/w/ACLAPtAOqDEeKl36+OTC/Omc4x+cxsW27KjP9xqSM4avY9NglRrh9v3vPY5E/oSTHkYyLfwH/P51tKJZ1CCPBF7Hu63JEHSQmal/69Pzmzrnv7/UcHLr4KIt9iOPj9+safxG0Xi9XZgEbvy9J2dvkqd2eJhyAj+UYy8tnUr6m2gIY1I4eMASeqAvRY4lAO71md8qTfaGsr+bYiGacWV6aqyAZiMgmahTvwzdyz/sZ3D0suCsxkFTNx8fDgxymP5iUmThEhYNhSYCGa9bJOzgjev7//Gdi4WCmIImIAdYqH389Pnfurby7DjlfRi/NXP4u4+qtz4lNF2MwvJ+rDfaf///Lh/W8ho6D82hwXaTZkeep4iZntzWyf+Mtz5yZrceOKgy9np0577tZZb8NLiZlMEjG77kSzcwKj+v+328tTbV0t7xy8MtWOD6GEZC/9ujM3u2jt0z9own/fPdw11/j176s7MpVYMXX9fbWtNO1wwModCfJYbCTFTEYWDmgsM3KpBlek1i2bOPV0l50zoswj2UtsKsmzNyWjCf7/sD/XnTV009J07P7ZWR7aK9C3o8VFBGv5TYaZUNcLSPMzfH725sd/Bh54NFEpL31mCly6ykmFCzPV/X68Nj9hhXr/hjwjXpLKBaxm/n+zq2WNTFmGFiSH/fnw9CODoLYEJ7Ia6niJTdbeGZv470dLYp1aWXKblZ4d3PoMLMQsoGVnrYQzxxEyk/HD8VV3nqdoKQAd/u/toemLHqqkLDdBaRCgeen3480Tpuy8dv3ALYZ37+rTMg3ULJNL4rTJbUN8v7Zyw90bPwtClyLENNpuXKxUZ8OtCR9g5FQw+F/nYrhUQZLj59tXPxWTNh2oMkV1HpqXWGV9Szt9gYz55FmJBvg8Nv+gbkOfy6xt/402vEpGSLN1iINh6CUAtN8SeLEvATUAAAAASUVORK5CYII=" alt="402vEpGSLN1iINh6CUAtN8SeLEvATUAAAAASUVOR" /> 经过点了2和点5之间的边因此第一个询问答案是YES。

接着将点对aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACgAAAATCAIAAABtIdhUAAADGElEQVR4nGP5//8/w0AAFqyi/96d3XlPwc1EmJlC47/f3nGSw8lBlo0oi3/dWz7lknGZMaW2AgGnkt7n9tlnC7KMeRgJWfz32Ya+qw5t0RyUWwsEzFLuwX/zF9/Ry1RlxW/xr9vLVnD6LeFDEfz96sj04pzpHJPPzLblxmfPvzfbknWDH818sdePHyrEpuqt2zzvfEKrGSc+i38/2LqL2yWVC2HU+5Mz67q333904OKrIALe+/t0dVbighc/nVD9Jm2lcmHF1e9mJsg2o1n8/+OF/T8N/bmQhDiUw3tWpzzpN9rait/a3/fm5S+QSzVmaEOT4JA3Zjt19PkfEyUk29As/vnk/At+K1Gk6GDiFBECGorfTiD4cW1y/jbHidPEUnox5Dgk5b+uffCDQYkHp8V/3j3+LcKPPY/hAf+/nukoPB06e7Ea+wYs0sx8YgzPX3z7z4CUtNHs+Pfj8z8ONrSUT9DaDwfryh9nLquVY2F4h00BExs3y8+PP/4BnYDLYgYGoKWkFWX/Xm8tb/5TudpPHE++xzQSzWImDl6mH79Jsvn9ga5Z+w7PEp6EJOYvwGgw5cHpbHmI8f9+ffvDLsrBhMdiVmE5trcf/5BisYDrvPNnPv6F8j7uSXauYOk9MMdbWxJu9t9PrxgkzLlQYhDNYjYZI6mPt1//ZuBHLWcwwKeDabou63Wmn9qQoqhiYAwXf3efj4GRVcXAQJ0fofjH84ec+nLsKAagWczIZ+DEufHudwYVmMW/H2+eMGXntesHbjG8e1eflmmgZplcEqfNJqQkx/5m99pr31MUCbiR4eejc98NPKTxF5mscl6eP+de/+ZuDi1EWGV9Szt9gYz5qAp1Sxa1b4n+ocqJKiwUcuj/P1ShP0+P3dAOLeNCFcVI1azK4VF/pp37ZG7Dhy6FBH7cWdVQfSJw8gxVQt5l+HV32yXb1GT0Ih6zrGAS98rT79900yRGHU8FxaWdNjtEiY8JtwoI+Pt8zwaWtGx1jAoZWyHFKheQpn/gxjtVAyFcBnNIaSsRshMEvj+4yheTbIheGQMBAFOcEjnl17u4AAAAAElFTkSuQmCC" alt="gxjtVAyFcBnNIaSsRshMEvj+4yheTbIheGQMBAFO" /> 加入到aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 中点1和点4之间的路径是aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEcAAAASCAIAAACGkVQMAAACj0lEQVR4nGP5//8/w7ADLAPtAJqAkeOr36+OTC/Omc4x+cxsW27KjP9xqSM4avY9NglRrh9v3vPY5E/oSTHkY6LMUAT492Zbsm7wo5kv9vrxI4uj+erf+5Mz67q333904OKrICpY+/v1jT+J2y4Wq7MBjd6Xpe3s8lXuzhIPQUYqmM3w9+nqrMQFL346YcigxxWHcnjP6pQn/UZbW6lhMYdaXJmqIhuIySRoFu7AN3PP+hvfPSy5KDf69715+QvkUo0Z2jDl0HzFxCkiBNRAuZ1QwCrr5Izg/fv7n4GNi5UaEfXj2uT8bY4Tp4ml9GKRpU5p8fv5qXN/9c1l2PEqenH+6mcRV391TkrN/P/1TEfh6dDZi9XYN2DVSx1fMbO9me0Tf3nu3GQtblwx8eXs1GnP3TrrbXgpNPP/h4N15Y8zl9XKsTC8w66XZF/9ujM3u2jt0z9own/fPdw11/j176s7MpVYMXX9fbWtNO1wwModCfJYbCTFzH+vt5Y3/6lc7SfOjNuRJPuKTSV59qZkNMH/H/bnurOGblqajt1LO8tDewX6drS4iGAt1Ekx8/2Brln7Ds8SnoQk5i/AaDDlwelseIhRKV99ZgpcuspJhQsz+f1+vDY/YYV6/4Y8I16SigkcZgq4zjt/5uNfKO/jnmTnCpbeA3O8tSWRvEIdX7HJ2jtjE//9aEmsUytLbrPSs4Nbn4GFmAW07KyVcOY+gmYyC6gYGMN57+7zMTCyqhgYqOOrhX8/3jxhys5r1w/cYnj3rj4t00DNMrkkTpvcFsb3ays33L3xsyB0KUJMo+3GxUp1NjJNJA6g+YpV1re00xfImE8V0/k8Nv+gaZdAKOTQ/3+YwiOndTv0wfD0FQBjVAxwdjc1BgAAAABJRU5ErkJggg==" alt="3+YwiOndTv0wfD0FQBjVAxwdjc1BgAAAABJRU5Er" /> 没有经过点2和点5之间的边因此第二个询问答案是NO。

接着我们删除了第一个加入到aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 中的点对也就是点对aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACgAAAATCAIAAABtIdhUAAADQ0lEQVR4nGP5//8/w0AAFqyi/96d3XlPwc1EmJlC47/f3nGSw8lBlo0oi3/dWz7lknGZMaW2AgGnkt7n9tlnC7KMeRgJWfz32Ya+qw5t0RyUWwsEzFLuwX/zF9/Ry1RlxW/xr9vLVnD6LeFDEfz96sj04pzpHJPPzLblxjD83/P5llJJpxACfBH7ni535IFw2FS9dZvnnU9oNePEZ/HvB1t3cbukciFMfX9yZl339vuPDlx8FYTLX4x8NvVrqi2gbmLkkDFAsoRF2krlwoqr381MkG1Gs/j/xwv7fxr6cyEJcSiH96xOedJvtLUVl70MDKxiJi4eHvzYJTnkjdlOHX3+x0QJyTY0i38+Of+C30oUKTqYOEWEgAGB204iAIek/Ne1D34wKPHgtPjPu8e/Rfix5zF84MuJ+nDf6f+/fHj/W8goKL82x0UaKQcx84kxPH/x7T8DUtJGs+Pfj8//ONjQUj4hwCQRs+tONDsnKyPD/2+3l6faulreOXhlqh0fzBwmNm6Wnx9//AM6AZfFwJQBjGjS7AXqYeGAphtGLtXgitS6ZROnnu6yc0aELKaRaBYzcfAy/fhNUSHKIiDNz/D52ZsfiJD99+vbH3ZRDiY8FrMKy7G9/fiHJJv+v9nVskamLEOLHcz98+HpRwZBbQlORIT9/fSKQcKcCyUG0SxmkzGS+nj79W8GftRyBgN8Opim67JeZ/qpDSkKjB+Or7rzPEVLAWjYv7eHpi96qJKy3ASpoPnx/CGnvhw7igFoFjPyGThxbrz7nUEFZvHvx5snTNl57fqBWwzv3tWnZRqoWSaXxGmzCSnJsb/Zvfba9xRFTgWD/3UuhksVJDl+vn31UzFp04EqUyR7fz46993AQxp/kckq5+X5c+71b+7m0EKEVda3tNMXyJiPqlC3ZFH7lugfqsBUxWrWtv9GG87A+fP02A3t0DIuVFGMVM2qHB71Z9q5T+Y2fOhSSODHnVUN1ScCJ89QJRAlwML/7rZLtqnJ6EU8ZlnBJO6Vp9+/6aZJjDqeCopLO212iBIfE24VEPD3+Z4NLGnZ6hgVMrZCilUuIE3/wI13qgZCuAzmkNJWImQnCHx/cJUvJtkQvTIGAgC8exhISJqlNQAAAABJRU5ErkJggg==" alt="cJUvJtkQvTIGAgC8exhISJqlNQAAAABJRU5ErkJg" /> 此时aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABEAAAASCAIAAAAym6IDAAABPUlEQVR4nGP5//8/A4mAhVQNVNPz983hSSW1i6785uf+//7x3Vd8QUsPTnfix6Pn991pfm6t0gsvngiTBsp9O1nsu4KbFa89/14dWHz8v8U2D2mIBLu8b2a0Oid+t7FwcDD+PLPq4Es3X3FmBgZmCYcQCQL+YRL1rMtQcJ3up34jq3dSU4KpMDOGhzHsYRJymXzmmHZxZtm0FLP50/KWbegJkMXvHxBgFrbMXnAuOn9OTkj6pOBQ1duHc5RYcer58/nNNw4RPpACJgHDtLmbnp/Sad509VuOEj8uPT8udecejVuUqwI1lZmTn5NRSF4IzWnIev5/vnXs9FGtZ+kq8mwgS1/u6pp4WzdroREXnjDg0Ir0WNDurNcjIyfK/vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAXnoAs5lpB7YMU7UAAAAASUVORK5CYII=" alt="vvDB1a9kj37MgzQYgdFDyOvXvKUHcmYgYJHD9GAX" /> 中唯一的点对就是aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACgAAAATCAIAAABtIdhUAAADGElEQVR4nGP5//8/w0AAFqyi/96d3XlPwc1EmJlC47/f3nGSw8lBlo0oi3/dWz7lknGZMaW2AgGnkt7n9tlnC7KMeRgJWfz32Ya+qw5t0RyUWwsEzFLuwX/zF9/Ry1RlxW/xr9vLVnD6LeFDEfz96sj04pzpHJPPzLblxmfPvzfbknWDH818sdePHyrEpuqt2zzvfEKrGSc+i38/2LqL2yWVC2HU+5Mz67q333904OKrIALe+/t0dVbighc/nVD9Jm2lcmHF1e9mJsg2o1n8/+OF/T8N/bmQhDiUw3tWpzzpN9rait/a3/fm5S+QSzVmaEOT4JA3Zjt19PkfEyUk29As/vnk/At+K1Gk6GDiFBECGorfTiD4cW1y/jbHidPEUnox5Dgk5b+uffCDQYkHp8V/3j3+LcKPPY/hAf+/nukoPB06e7Ea+wYs0sx8YgzPX3z7z4CUtNHs+Pfj8z8ONrSUT9DaDwfryh9nLquVY2F4h00BExs3y8+PP/4BnYDLYgYGoKWkFWX/Xm8tb/5TudpPHE++xzQSzWImDl6mH79Jsvn9ga5Z+w7PEp6EJOYvwGgw5cHpbHmI8f9+ffvDLsrBhMdiVmE5trcf/5BisYDrvPNnPv6F8j7uSXauYOk9MMdbWxJu9t9PrxgkzLlQYhDNYjYZI6mPt1//ZuBHLWcwwKeDabou63Wmn9qQoqhiYAwXf3efj4GRVcXAQJ0fofjH84ec+nLsKAagWczIZ+DEufHudwYVmMW/H2+eMGXntesHbjG8e1eflmmgZplcEqfNJqQkx/5m99pr31MUCbiR4eejc98NPKTxF5mscl6eP+de/+ZuDi1EWGV9Szt9gYz5qAp1Sxa1b4n+ocqJKiwUcuj/P1ShP0+P3dAOLeNCFcVI1azK4VF/pp37ZG7Dhy6FBH7cWdVQfSJw8gxVQt5l+HV32yXb1GT0Ih6zrGAS98rT79900yRGHU8FxaWdNjtEiY8JtwoI+Pt8zwaWtGx1jAoZWyHFKheQpn/gxjtVAyFcBnNIaSsRshMEvj+4yheTbIheGQMBAFOcEjnl17u4AAAAAElFTkSuQmCC" alt="gxjtVAyFcBnNIaSsRshMEvj+4yheTbIheGQMBAFO" /> 经过了点2和点4之间的边因此最后一个询问答案是YES。

【样例输入输出2】

见下发的travel / travel1.intravel / travel1.ans

【样例输入输出3】

见下发的travel / travel2.intravel / travel2.ans这组数据中aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADcAAAASCAIAAABw2NGUAAAEgElEQVR4nGP5//8/w6AHLAPtAKLAqCtJAr9fHZlenDOdY/KZ2bbc6JJYXPnj9qYd/90C1Dho56T/3+8fPvxB29lQmBnI+/f+5My67u33Hx24+CoIq3oMV36/2BVV9XGGawAN3fjxSHVwtdii3W5QAQ7l8J7VKU/6jba2YteB4so/L/ZOyE+oP/NZv8TT4OGX/6/Pfs67eL1Vj53h140uG50Kxpm353wpci/YJD1pf+Gd2uKpRz4rh/ZtWpSmDg33v+9OzKhs3/We8fWZy1wx81Y12Asxgcz9+ubNp9/QsuT/l1MN6Yc9p68W/fHrPwcbIwMDE6eIEDDK8fgLxZUsErbeetzlp2IW7mjXZ/+8O1Ta58StL//12BnZFFwdFKd+0pTUUYtRL9p0aeOGr3WLziXvSbNNyysID9oWLMLI8O/d/hK7yMuZB7dkq31Z7SgeVrUt+3CMOBPDn2ebqtNm3foJsuLfpxuHL7IYW6s0JF1z7F5aZ8xFTOijxfj3+ycfMSubyrID2Zyq9sp/u44/+BkizPHz7ub9otlLTLh+Xjtzn0Etf1JXqhYbA0NUiV/ZlqNnn/4KFmH/eqoxfvL/vMup6hz/P589co9JLVaHnwlsh1zkzB2R4LB+tiLaU7x427IoaZKyLariX8/O3fopE6QMzmQsYoYmQi9O3fj43/DLjtZNRi171dgY3t8/95xTy1yGDaqDkZGBg48D6JjPJycvfKxZ7cN9fevE6f3Lnyds3FtjgJoBf92dldLJ17E7gjQnYrgSFJQsyibgoAQlans1xq3H7r/X29n9IWOZHT8jw8+nZ+/9lc9Q4gQr+PPy/MX3AkbmUqwMv++fPv+Rne/FwX23NR3qt+RJcjDCTf19b3Z4YM/FZ7fufZJSUSy00SoE+0/Ia+7uPiuMUoegK389O3/7p1SgMlQnk4C2leTbffsWPN9l27RbjgXsjbPPuLUNJVjBtj/YsPCGfMJsc16g1j8//zBwKPkkJjjyoNvBqpS67oR5m3va1549LWY8jOjyJLryz4cnH/5zC3Mx/f/94y8LBwuHgo0mU3dDl8KKS0bgVP7r6fm7f+WzQEH5/+vlqakdv7JX15mApNhkbCyE6rfP3f3cNlCS8dPNbYsPScSkmPJDnPT1bHvGVpcZu8lyIrorOTXDQtXnlZnr7YyumdkbrcTGrW6nyPk8vsVHDJwNGL4/PPPk943OIPf9yjw/f0qGbj6cYS4IkeKz71lR/TwlSlZQWEXL0D2tvsGLH+4kbsP6w0eYmXE48ffjzROm7Lx2/cAthnfv6tMyDdQsk0vitJHSAoorGQUcJ1//ORkh8PP1S/Gk/gx1aF759fz87b8GfcdP5yhgpn9mMdeW3Q9bsDuEiZkZRzABAausb2mnL5AxH5cKfLnt1+0FPa/TptnBw+THg9NP2RTVhOle+WOx8Pe9Jd13PMvNbrQXHg+cukgKHgq/X1y6/UMyTJqdng4EAyyu/PV490Sv7KnqjgVzF8TKwxT8ebqts3rmtT8vNrU063TUBcuz0tGVAKxFzPowwv8+AAAAAElFTkSuQmCC" alt="PV490Sv7KnqjgVzF8TKwxT8ebqts3rmtT8vNrU06" /> 。

【数据规模和约定】

数据点

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA9UlEQVR4nGP5//8/AymAhSTVw1HDvzf7GqIimvdoLL5Ydbsyr3/rbRbbtv07K/U5cWhgEnHMSVBv2/t0fuP+1M5Tj2ubdC1mLrtZqG/AgctJPx6duv9X2Ll4RruXCNOP8yxMzLxiPMy4/fD/y53zL7ltY2xFmICcr/fPPedU0xVnxa3h56PT9//Je8uDXfDzyem7f2UzFDgYcGr4/+Xu2eec6gYSYDO/3T39jF1NX4IVt4afj4EWyHnIc0I4Z+79kUtBswBFw/+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcMi+XyEwnlDg7t9YEvIgTEsAgI9iPMzsytMAAAAASUVORK5CYII=" alt="+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcM" /> 的规模

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABMAAAASCAIAAAA2bnI+AAABWUlEQVR4nGP5//8/A1mAhTxtI1Xnv7cHGiPDm/aozD9deq0kZ8LBXw59B1b7XqqOyZ9xhj143pGlsXIsWHUyCdvnpmq17X20bML10sUXfNv07FqyU6/65W246JKmEjzt4MToWAkm7K79+ejUvT/8ljl95a6iP47/+8fArJjSVWAj+HkHw39Wfn4OJoRSVJ3/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTpwh9PPx6Xv/5L0UOIDsHw9P3mdQiAGzvz84+YhZyViGHZfO/1/vnHnOoa4vwQoMrU83z7/m1dISZmZg+P3iws0fkr5KXDjD9uejM/f+ymWCrfn58NSD//KREOuBVjIpmciy49L5/+vd08841KBW3jr/ildLRwSoAOjLm1///Nu65IhDjq0oMxadjMIh+36FQNhM4rFH/8RC2KxqZVf/lzGggQFPfSQBAHxNjXJtBL4HAAAAAElFTkSuQmCC" alt="lzGggQFPfSQBAHxNjXJtBL4HAAAAAElFTkSuQmCC" /> 的规模

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACMAAAASCAIAAABenfAGAAADUElEQVR4nGP5//8/A10AC32sGTk2/bi9acd/twA1Dhrb9P1iV1TVxxmuAdS1B82mPy/2TshPqD/zWb/E0+Dhl/+vz37Ou3i9VY+d4deNLhudCsaZt+d8KXIv2CQ9aX/hndriqUc+K4f2bVqUpg71/993J2ZUtu96z/j6zGWumHmrGuyFmLDaxCJh663HXX4qZuGOdn32z7tDpX1O3PryX4+dkU3B1UFx6idNSR21GPWiTZc2bvhat+hc8p4027S8gvCgbcEijAz/3u0vsYu8nHlwS7bal9WO4mFV27IPx4gzYbMJGHb3Tz5iVjaVZQeyOVXtlf92HX/wM0SY4+fdzftFs5eYcP28duY+g1r+pK5ULTYGhqgSv7ItR88+/RUswv71VGP85P95l1PVOf5/PnvkHpNarA4/E5I3UCz69ezcrZ8yQcrcYCkxQxOhF6dufPxv+GVH6yajlr1qbAzv7597zqllLsMG1cHIyMDBxwE08PPJyQsfa1b7cF/fOnF6//LnCRv31hggJypUm0BeYlE2AXuJgYFD2V6Nceux++/1dnZ/yFhmx8/I8PPp2Xt/5TOUOCHx+vL8xfcCRuZSrAy/758+/5Gd78XBfbc1Heq35ElyMOJLEb+enb/9UyoQ4iUGBiYBbSvJt/v2LXi+y7ZptxwL2Clnn3FrG0qwguR/P9iw8IZ8wmxzXqDWPz//MHAo+SQmOPIwYAWoae/Dkw//uYW5mP7//vGXhYOFQ8FGk6m7oUthxSUjLrBTnp6/+1c+C+Sl/18vT03t+JW9us4EJMUmY2MhVL997u7ntoGSjJ9ublt8SCImxZSfEbtNnJphoerzysz1dkbXzOyNVmLjVrdT5Hwe3+IjBona7w/PPPl9ozPIfb8yz8+fkqGbD2eYC0Kk+Ox7VlQ/T4mSFRRW0TJ0T6tv8OJHCUAUmxgFHCdf/zkZIfDz9UvxpP4MdWj8/3p+/vZfg77jp3MUMMsWZjHXlt0PW7AHHbpNaODX7QU9r9Om2cHd9uPB6adsimrCZBWWWDT9vrek+45nudmN9sLjgVMXSTHDJV5cuv1DMkyanRyLsNn06/HuiV7ZU9UdC+YuiJWHKfjzdFtn9cxrf15samnW6agLlmcl0SYAxkBVx0WjrT8AAAAASUVORK5CYII=" alt="HuiV7ZU9UdC+YuiJWHKfjzdFtn9cxrf15samnW6a" /> =

备注

1

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADQAAAASCAIAAACb72qXAAADg0lEQVR4nGP5//8/w2AFLAPtAHxgRDnu96sj04tzpnNMPjPblhsq9v/L5TkFuXPvsHH/fP1LO2fGxCRtbkY84tRz3P/fP/6ycLAADf33/uTMuu7t9x8duPgqCEnBxwNFXlVv+y7vDZX4/3COm55nscqV6fZ8DDjEkZxHgeP+vju/sqdlxk3HOctz1NiAAhzK4T2rU570G21tRXLbm13tiz/abXCXYAby5IILbPPD23a12AX/xy4eIoJwHYrj/r3Z1xAV0bxHY/HFqtuVef1bb7PYtu3fWanPieqs369PL+tum32a16ugdWuLBi8TWJSJU0QIKIfmhW83t5/7IVUoxwHmMXIrm0r/mLL9xjdPBuziITbccL0ojmMSccxJUG/b+3R+4/7UzlOPa5t0LWYuu1mob8ABVfHr5fHFne0Lr4gHFPfu6lTiQkkiWMHPF3ffMvCI8jJDuMx8ErwMb+68+PmTAbs4AwMOxzEw/Hh06v5fYefiGe1eIkw/zrMwMfOK8UD1/743N8K59kPSooW7e2XYCTsLDP79+gq0j5mNGaqekYUNaOXPrz9+MGAV//UPGEbYHff/y53zL7ltY2xFgAr+f71/7jmnmq44K0SSVTF6wtxvbT0t2ZX3y0rjrSXZiHAcExs3OwPD159/oEX9/98//zAw8HBzcDBgFWdjQtKM6rifj07f/yfvLQ+OxZ9PTt/9K5uhAItSBkYOWafc6Y5pTw/NbU92apYLK61MdZLnxB+GHJJqogwHX37+CwwnIPfPp2cfGUQMJNg5GLGLI+tFcdz/L3fPPudUN5AAh9W3u6efsavpS7Ci2sbILm2fNcU+5fmR+e2Zjs3iEa09udbCzLgcx6nuYcS54tzD7wxabCAbbp96ym7grs7FyYhdHKfjfj4GBpychzwnhHPm3h+5FETAoQI2SZv0SdsSX57ec/sXvtqZUdi1Mk4wePqO527hkv8erJlwVCh2o7sIIyMDdnFcjvv/FRhwHGoGkuCw+nrv9ON/b08s3/KgOkgBlLx+XGjyiVn25A+q5awKSSucbSSB5vx+vHnClJ3Xrh+4xfDuXX1apoGaZXJJnDY3n13PlrbcHH+XBYK/X35T79/Z78gPcgMuceyOYxQO2fcrBMYTCtz9GyVIOAzq9lypwx1GrLK+pZ2+QMZ89MDj0UubfygNM1BxiGN13KADo44jFwAATy+k+daNYakAAAAASUVORK5CYII=" alt="Z78gPcgMuceyOYxQO2fcrBMYTCtz9GyVIOAzq9ly" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEAAAAASCAIAAABkTU91AAAD4klEQVR4nGP5//8/w1AGLAPtAErBqAfwgN+vjkwvzpnOMfnMbFtuqNj/L5fnFOTOvcPG/fP1L+2cGROTtLkZyRCngQf+//7xl4WDBWL6v/cnZ9Z1b7//6MDFV0FIaj4eKPKqett3eW+oxP+Hc9z0PItVrky352MgURzJC9TwwN9351f2tMy46ThneY4aG0SMQzm8Z3XKk36jra1I7n+zq33xR7sN7hLMQJ5ccIFtfnjbrha74P+kiYeIIHyA4oF/bw80RoY37VGZf7r0WknOhIO/HPoOrPa9VB2TP+MMe/C8I0tj5VA0/H59ell32+zTvF4FrVtbNHiZYBJMnCJCQGk0n367uf3cD6lCOQ4wj5Fb2VT6x5TtN755MpAmHmLDDTcTxT1Mwva5qVptex8tm3C9dPEF3zY9u5bs1Kt+eRsuuqSpBE87ODE6VgLiyF8vjy/ubF94RTyguHdXpxIXSrrEBX6+uPuWgUeUlxnCZeaT4GV4c+fFz58MpIkzMODwANCKR6fu/eG3zOkrdxX9cfzfPwZmxZSuAhvBzzsY/rPy83OAXf/73twI59oPSYsW7u6VYSfK6WDw79dXoN3MbMxQLYwsbEDrf3798YOBJPFf/4Bhjd0D/7/cPfOcxynZUZSJ4d+n25feCLrHWwsyMvx+fuH2T6lABU6wKlbF6Alzv7X1tGRX3i8rjbeWZCPOA0xs3OwMDF9//oFWnf9///zDwMDDzcHBQJI4GxOSoage+Pn49L1/8l4KoET34+HJ+wwKMWD29wcnHzErGcuwQ4OCQ9Ypd7pj2tNDc9uTnZrlwkorU53kOQnGBYekmijDwZef/wLDFcj98+nZRwYRAwl2DkbSxJHNRPHA/693zjznUNeXYAXG96eb51/zamkJA7X+fnHh5g9JXyUuFOcwskvbZ02xT3l+ZH57pmOzeERrT661MDMeD3Cqexhxrjj38DuDFhsoum+fespu4K7OxclImjhOD/x8dObeX7lMcKD/fHjqwX/5SEhkACOASclEFsXrMMAmaZM+aVviy9N7bv8i0KxiFHatjBMMnr7juVu45L8HayYcFYrd6C7CyMhAmjguD/z/evf0Mw41aATcOv+KV0tHBKgAmANufv3zb+uSIw45tqLMDD8uNPnELHvyB9V1rApJK5xtJCEG/n68ecKUndeuH7jF8O5dfVqmgZplckmcNjefXc+Wttwcf5cFgr9fflPv39nvyA9yD6ni2D3AKByy71cIhM0kHnv0TyzUaWplV/+XIdRxGNTtuVKHN6xZZX1LO32BjPnokcCjlzb/UBpm5JAojtUDQxKMemCgAQCtYTMd75i59AAAAABJRU5ErkJggg==" alt="UBpm5JAojtUDQxKMemCgAQCtYTMd75i59AAAAABJ" />

1,2,3,4

2

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEwAAAASCAIAAAB+ca/7AAADiUlEQVR4nGP5//8/w3AHLAPtAHqAUU+SAX6/OjK9OGc6x+Qzs225oWL/v1yeU5A79w4b98/Xv7RzZkxM0uZmpIM49Tz5//ePvywcLEBD/70/ObOue/v9RwcuvgpCUvDxQJFX1du+y3tDJf4/nOOm51mscmW6PR8DjcWRvEmBJ/++O7+yp2XGTcc5y3PU2IACHMrhPatTnvQbbW1F8uObXe2LP9ptcJdgBvLkggts88PbdrXYBf+nrXiICMKXKJ7892ZfQ1RE8x6NxRerblfm9W+9zWLbtn9npT4nqvd+vz69rLtt9mler4LWrS0avExgUSZOESGgHFpQfLu5/dwPqUI5DjCPkVvZVPrHlO03vnky0FY8xIYb7gYUTzKJOOYkqLftfTq/cX9q56nHtU26FjOX3SzUN+CAqvj18vjizvaFV8QDint3dSpxoSR9rODni7tvGXhEeZkhXGY+CV6GN3de/PzJQFtxBgYcnmRg+PHo1P2/ws7FM9q9RJh+nGdhYuYV44Hq/31vboRz7YekRQt398qwE/YeGPz79RVoHzMbM1Q9Iwsb0MqfX3/8YKCp+K9/wDjD7sn/X+6cf8ltG2MrAlTw/+v9c8851XTFWSGSrIrRE+Z+a+tpya68X1Yaby3JRoQnmdi42RkYvv78A21y/P/98w8DAw83BwcDTcXZmJAcgerJn49O3/8n7y0PTp0/n5y++1c2QwGWVBkYOWSdcqc7pj09NLc92alZLqy0MtVJnhN/nHJIqokyHHz5+S8wvIHcP5+efWQQMZBg52CkrTiyG1A8+f/L3bPPOdUNJMBx9+3u6WfsavoSrKiuZmSXts+aYp/y/Mj89kzHZvGI1p5ca2FmXJ7kVPcw4lxx7uF3Bi02kA23Tz1lN3BX5+JkpK04Tk/+fAyMSDkPeU4I58y9P3IpiIhEBWySNumTtiW+PL3n9i98rV9GYdfKOMHg6Tueu4VL/nuwZsJRodiN7iKMjAy0Fcflyf9fgRHJoWYgCY67r/dOP/739sTyLQ+qgxRA2e/HhSafmGVP/qB6glUhaYWzjSTQnN+PN0+YsvPa9QO3GN69q0/LNFCzTC6J0+bms+vZ0pab4++yQPD3y2/q/Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e67U4Y4zVlnf0k5fIGM+emTy6KXNP5SGGck0FoeD0Qb6cAEjwpMA1nLNpaQr0XoAAAAASUVORK5CYII=" alt="Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAFAAAAASCAIAAABD486dAAAEaElEQVR4nGP5//8/w0gCLAPtAHqDUQ9TBfy81hccPOkmu6Qkz+/Xr1mM03sn5lsLMwNl/n+5PKcgd+4dNu6fr39p58yYmKTNzUgHcRp4+P/vH39ZOFjApv95e/tXxMbL9focDP8/HS3WtfFIVb6/1l+E4eOBIq+qt32X94ZK/H84x03Ps1jlynR7PlqLI3mZGh7+++78yp6WGTcd5yzPUWMDibDK+mZGqHOAmIx8BgEOgv27dt757i/8dVf74o92G9wlQJEtF1xgmx/etqvFLvg/bcVDRBA+RvHwv7cHGiPDm/aozD9deq0kZ8LBXw59B1b7XqqOyZ9xhj143pGlsXIoGn6/Pr2su232aV6vgtatLRq8TFBxNgWvQETU//n5l4FHjJeZ4dvN7ed+SBXKgUOCgZFb2VT6x5TtN755MtBWPMSGG7uHmYTtc1O12vY+WjbheuniC75tenYt2alX/fI2XHRJUwmednBidKwExFO/Xh5f3Nm+8Ip4QHHvrk4lLpR8ggx+Pdw8bR+zW2u8GjvD5xd33zLwiPIyQ6SY+SR4Gd7cefHzJwNtxRkYcHgYWNo8OnXvD79lTl+5q+iP4//+MTArpnQV2Ah+3sHwn5WfnwPs29/35kY4135IWrRwd68MOy6v/nu9OcW7bN/te180MmcviVFgZfj36yvQbmY2ZqgWRhY2oPU/v/74wUBT8V//gHGJ3cP/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTrAqVsXoCXO/tfW0ZFfeLyuNt5Zkw+ZhJlHfead8Gf5/v7s620nH+Pju491a3OwMDF9//oE2df7//vmHgYGHm4ODgabibExIzkL18M/Hp+/9k/dSAGWCHw9P3mdQiAGzvz84+YhZyViGHRp0HLJOudMd054emtue7NQsF1Zameokz4k1rhk5lQMrsxvV6jqO1K6SVBNlOPjy819gPACl/nx69pFBxECCnYORtuLI7kHx8P+vd84851DXl2AFpshPN8+/5tXSAtWev19cuPlD0leJC9Ur7NL2WVPsU54fmd+e6dgsHtHakwupbH8/3rXti42/Jlw9IyPD319//nOqexhxrjj38DuDFhsoOd0+9ZTdwF2di5ORtuI4Pfzz0Zl7f+UywZH68+GpB//lIyGRDYxgJiUTWZSgggE2SZv0SdsSX57ec/sXNC39ebl3ylIel34rUFnx//OFJQuv83nXm/MyCrtWxgkGT9/x3C1c8t+DNROOCsVudBcBBgdtxXF5+P/Xu6efcahBI/jW+Ve8WjoiQAXAHHzz659/W5ccccixFWVm+HGhySdm2ZM/qB5nVUha4WwjCTKQVUxX4lC8iamUjCDrrw+vPgs5zT3cGgKqHPnsera05eb4uywQ/P3ym3r/zn5HfpB7aC2O3cOMwiH7foVA2EzisUf/xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUYefTS5h9Ko7s4wm143D0swaiHhzsAAKBmLxNlxrDXAAAAAElFTkSuQmCC" alt="xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUY" />

2,4

3

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEwAAAASCAIAAAB+ca/7AAADiUlEQVR4nGP5//8/w3AHLAPtAHqAUU+SAX6/OjK9OGc6x+Qzs225oWL/v1yeU5A79w4b98/Xv7RzZkxM0uZmpIM49Tz5//ePvywcLEBD/70/ObOue/v9RwcuvgpCUvDxQJFX1du+y3tDJf4/nOOm51mscmW6PR8DjcWRvEmBJ/++O7+yp2XGTcc5y3PU2IACHMrhPatTnvQbbW1F8uObXe2LP9ptcJdgBvLkggts88PbdrXYBf+nrXiICMKXKJ7892ZfQ1RE8x6NxRerblfm9W+9zWLbtn9npT4nqvd+vz69rLtt9mler4LWrS0avExgUSZOESGgHFpQfLu5/dwPqUI5DjCPkVvZVPrHlO03vnky0FY8xIYb7gYUTzKJOOYkqLftfTq/cX9q56nHtU26FjOX3SzUN+CAqvj18vjizvaFV8QDint3dSpxoSR9rODni7tvGXhEeZkhXGY+CV6GN3de/PzJQFtxBgYcnmRg+PHo1P2/ws7FM9q9RJh+nGdhYuYV44Hq/31vboRz7YekRQt398qwE/YeGPz79RVoHzMbM1Q9Iwsb0MqfX3/8YKCp+K9/wDjD7sn/X+6cf8ltG2MrAlTw/+v9c8851XTFWSGSrIrRE+Z+a+tpya68X1Yaby3JRoQnmdi42RkYvv78A21y/P/98w8DAw83BwcDTcXZmJAcgerJn49O3/8n7y0PTp0/n5y++1c2QwGWVBkYOWSdcqc7pj09NLc92alZLqy0MtVJnhN/nHJIqokyHHz5+S8wvIHcP5+efWQQMZBg52CkrTiyG1A8+f/L3bPPOdUNJMBx9+3u6WfsavoSrKiuZmSXts+aYp/y/Mj89kzHZvGI1p5ca2FmXJ7kVPcw4lxx7uF3Bi02kA23Tz1lN3BX5+JkpK04Tk/+fAyMSDkPeU4I58y9P3IpiIhEBWySNumTtiW+PL3n9i98rV9GYdfKOMHg6Tueu4VL/nuwZsJRodiN7iKMjAy0Fcflyf9fgRHJoWYgCY67r/dOP/739sTyLQ+qgxRA2e/HhSafmGVP/qB6glUhaYWzjSTQnN+PN0+YsvPa9QO3GN69q0/LNFCzTC6J0+bms+vZ0pab4++yQPD3y2/q/Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e67U4Y4zVlnf0k5fIGM+emTy6KXNP5SGGck0FoeD0Qb6cAEjwpMA1nLNpaQr0XoAAAAASUVORK5CYII=" alt="Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAFAAAAASCAIAAABD486dAAAEaElEQVR4nGP5//8/w0gCLAPtAHqDUQ9TBfy81hccPOkmu6Qkz+/Xr1mM03sn5lsLMwNl/n+5PKcgd+4dNu6fr39p58yYmKTNzUgHcRp4+P/vH39ZOFjApv95e/tXxMbL9focDP8/HS3WtfFIVb6/1l+E4eOBIq+qt32X94ZK/H84x03Ps1jlynR7PlqLI3mZGh7+++78yp6WGTcd5yzPUWMDibDK+mZGqHOAmIx8BgEOgv27dt757i/8dVf74o92G9wlQJEtF1xgmx/etqvFLvg/bcVDRBA+RvHwv7cHGiPDm/aozD9deq0kZ8LBXw59B1b7XqqOyZ9xhj143pGlsXIoGn6/Pr2su232aV6vgtatLRq8TFBxNgWvQETU//n5l4FHjJeZ4dvN7ed+SBXKgUOCgZFb2VT6x5TtN755MtBWPMSGG7uHmYTtc1O12vY+WjbheuniC75tenYt2alX/fI2XHRJUwmednBidKwExFO/Xh5f3Nm+8Ip4QHHvrk4lLpR8ggx+Pdw8bR+zW2u8GjvD5xd33zLwiPIyQ6SY+SR4Gd7cefHzJwNtxRkYcHgYWNo8OnXvD79lTl+5q+iP4//+MTArpnQV2Ah+3sHwn5WfnwPs29/35kY4135IWrRwd68MOy6v/nu9OcW7bN/te180MmcviVFgZfj36yvQbmY2ZqgWRhY2oPU/v/74wUBT8V//gHGJ3cP/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTrAqVsXoCXO/tfW0ZFfeLyuNt5Zkw+ZhJlHfead8Gf5/v7s620nH+Pju491a3OwMDF9//oE2df7//vmHgYGHm4ODgabibExIzkL18M/Hp+/9k/dSAGWCHw9P3mdQiAGzvz84+YhZyViGHRp0HLJOudMd054emtue7NQsF1Zameokz4k1rhk5lQMrsxvV6jqO1K6SVBNlOPjy819gPACl/nx69pFBxECCnYORtuLI7kHx8P+vd84851DXl2AFpshPN8+/5tXSAtWev19cuPlD0leJC9Ur7NL2WVPsU54fmd+e6dgsHtHakwupbH8/3rXti42/Jlw9IyPD319//nOqexhxrjj38DuDFhsoOd0+9ZTdwF2di5ORtuI4Pfzz0Zl7f+UywZH68+GpB//lIyGRDYxgJiUTWZSgggE2SZv0SdsSX57ec/sXNC39ebl3ylIel34rUFnx//OFJQuv83nXm/MyCrtWxgkGT9/x3C1c8t+DNROOCsVudBcBBgdtxXF5+P/Xu6efcahBI/jW+Ve8WjoiQAXAHHzz659/W5ccccixFWVm+HGhySdm2ZM/qB5nVUha4WwjCTKQVUxX4lC8iamUjCDrrw+vPgs5zT3cGgKqHPnsera05eb4uywQ/P3ym3r/zn5HfpB7aC2O3cOMwiH7foVA2EzisUf/xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUYefTS5h9Ko7s4wm143D0swaiHhzsAAKBmLxNlxrDXAAAAAElFTkSuQmCC" alt="xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUY" />

2,4

4

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEwAAAASCAIAAAB+ca/7AAADiUlEQVR4nGP5//8/w3AHLAPtAHqAUU+SAX6/OjK9OGc6x+Qzs225oWL/v1yeU5A79w4b98/Xv7RzZkxM0uZmpIM49Tz5//ePvywcLEBD/70/ObOue/v9RwcuvgpCUvDxQJFX1du+y3tDJf4/nOOm51mscmW6PR8DjcWRvEmBJ/++O7+yp2XGTcc5y3PU2IACHMrhPatTnvQbbW1F8uObXe2LP9ptcJdgBvLkggts88PbdrXYBf+nrXiICMKXKJ7892ZfQ1RE8x6NxRerblfm9W+9zWLbtn9npT4nqvd+vz69rLtt9mler4LWrS0avExgUSZOESGgHFpQfLu5/dwPqUI5DjCPkVvZVPrHlO03vnky0FY8xIYb7gYUTzKJOOYkqLftfTq/cX9q56nHtU26FjOX3SzUN+CAqvj18vjizvaFV8QDint3dSpxoSR9rODni7tvGXhEeZkhXGY+CV6GN3de/PzJQFtxBgYcnmRg+PHo1P2/ws7FM9q9RJh+nGdhYuYV44Hq/31vboRz7YekRQt398qwE/YeGPz79RVoHzMbM1Q9Iwsb0MqfX3/8YKCp+K9/wDjD7sn/X+6cf8ltG2MrAlTw/+v9c8851XTFWSGSrIrRE+Z+a+tpya68X1Yaby3JRoQnmdi42RkYvv78A21y/P/98w8DAw83BwcDTcXZmJAcgerJn49O3/8n7y0PTp0/n5y++1c2QwGWVBkYOWSdcqc7pj09NLc92alZLqy0MtVJnhN/nHJIqokyHHz5+S8wvIHcP5+efWQQMZBg52CkrTiyG1A8+f/L3bPPOdUNJMBx9+3u6WfsavoSrKiuZmSXts+aYp/y/Mj89kzHZvGI1p5ca2FmXJ7kVPcw4lxx7uF3Bi02kA23Tz1lN3BX5+JkpK04Tk/+fAyMSDkPeU4I58y9P3IpiIhEBWySNumTtiW+PL3n9i98rV9GYdfKOMHg6Tueu4VL/nuwZsJRodiN7iKMjAy0Fcflyf9fgRHJoWYgCY67r/dOP/739sTyLQ+qgxRA2e/HhSafmGVP/qB6glUhaYWzjSTQnN+PN0+YsvPa9QO3GN69q0/LNFCzTC6J0+bms+vZ0pab4++yQPD3y2/q/Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e67U4Y4zVlnf0k5fIGM+emTy6KXNP5SGGck0FoeD0Qb6cAEjwpMA1nLNpaQr0XoAAAAASUVORK5CYII=" alt="Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAFAAAAASCAIAAABD486dAAAEaElEQVR4nGP5//8/w0gCLAPtAHqDUQ9TBfy81hccPOkmu6Qkz+/Xr1mM03sn5lsLMwNl/n+5PKcgd+4dNu6fr39p58yYmKTNzUgHcRp4+P/vH39ZOFjApv95e/tXxMbL9focDP8/HS3WtfFIVb6/1l+E4eOBIq+qt32X94ZK/H84x03Ps1jlynR7PlqLI3mZGh7+++78yp6WGTcd5yzPUWMDibDK+mZGqHOAmIx8BgEOgv27dt757i/8dVf74o92G9wlQJEtF1xgmx/etqvFLvg/bcVDRBA+RvHwv7cHGiPDm/aozD9deq0kZ8LBXw59B1b7XqqOyZ9xhj143pGlsXIoGn6/Pr2su232aV6vgtatLRq8TFBxNgWvQETU//n5l4FHjJeZ4dvN7ed+SBXKgUOCgZFb2VT6x5TtN755MtBWPMSGG7uHmYTtc1O12vY+WjbheuniC75tenYt2alX/fI2XHRJUwmednBidKwExFO/Xh5f3Nm+8Ip4QHHvrk4lLpR8ggx+Pdw8bR+zW2u8GjvD5xd33zLwiPIyQ6SY+SR4Gd7cefHzJwNtxRkYcHgYWNo8OnXvD79lTl+5q+iP4//+MTArpnQV2Ah+3sHwn5WfnwPs29/35kY4135IWrRwd68MOy6v/nu9OcW7bN/te180MmcviVFgZfj36yvQbmY2ZqgWRhY2oPU/v/74wUBT8V//gHGJ3cP/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTrAqVsXoCXO/tfW0ZFfeLyuNt5Zkw+ZhJlHfead8Gf5/v7s620nH+Pju491a3OwMDF9//oE2df7//vmHgYGHm4ODgabibExIzkL18M/Hp+/9k/dSAGWCHw9P3mdQiAGzvz84+YhZyViGHRp0HLJOudMd054emtue7NQsF1Zameokz4k1rhk5lQMrsxvV6jqO1K6SVBNlOPjy819gPACl/nx69pFBxECCnYORtuLI7kHx8P+vd84851DXl2AFpshPN8+/5tXSAtWev19cuPlD0leJC9Ur7NL2WVPsU54fmd+e6dgsHtHakwupbH8/3rXti42/Jlw9IyPD319//nOqexhxrjj38DuDFhsoOd0+9ZTdwF2di5ORtuI4Pfzz0Zl7f+UywZH68+GpB//lIyGRDYxgJiUTWZSgggE2SZv0SdsSX57ec/sXNC39ebl3ylIel34rUFnx//OFJQuv83nXm/MyCrtWxgkGT9/x3C1c8t+DNROOCsVudBcBBgdtxXF5+P/Xu6efcahBI/jW+Ve8WjoiQAXAHHzz659/W5ccccixFWVm+HGhySdm2ZM/qB5nVUha4WwjCTKQVUxX4lC8iamUjCDrrw+vPgs5zT3cGgKqHPnsera05eb4uywQ/P3ym3r/zn5HfpB7aC2O3cOMwiH7foVA2EzisUf/xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUYefTS5h9Ko7s4wm143D0swaiHhzsAAKBmLxNlxrDXAAAAAElFTkSuQmCC" alt="xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUY" />

2,3,4

5

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEwAAAASCAIAAAB+ca/7AAADiUlEQVR4nGP5//8/w3AHLAPtAHqAUU+SAX6/OjK9OGc6x+Qzs225oWL/v1yeU5A79w4b98/Xv7RzZkxM0uZmpIM49Tz5//ePvywcLEBD/70/ObOue/v9RwcuvgpCUvDxQJFX1du+y3tDJf4/nOOm51mscmW6PR8DjcWRvEmBJ/++O7+yp2XGTcc5y3PU2IACHMrhPatTnvQbbW1F8uObXe2LP9ptcJdgBvLkggts88PbdrXYBf+nrXiICMKXKJ7892ZfQ1RE8x6NxRerblfm9W+9zWLbtn9npT4nqvd+vz69rLtt9mler4LWrS0avExgUSZOESGgHFpQfLu5/dwPqUI5DjCPkVvZVPrHlO03vnky0FY8xIYb7gYUTzKJOOYkqLftfTq/cX9q56nHtU26FjOX3SzUN+CAqvj18vjizvaFV8QDint3dSpxoSR9rODni7tvGXhEeZkhXGY+CV6GN3de/PzJQFtxBgYcnmRg+PHo1P2/ws7FM9q9RJh+nGdhYuYV44Hq/31vboRz7YekRQt398qwE/YeGPz79RVoHzMbM1Q9Iwsb0MqfX3/8YKCp+K9/wDjD7sn/X+6cf8ltG2MrAlTw/+v9c8851XTFWSGSrIrRE+Z+a+tpya68X1Yaby3JRoQnmdi42RkYvv78A21y/P/98w8DAw83BwcDTcXZmJAcgerJn49O3/8n7y0PTp0/n5y++1c2QwGWVBkYOWSdcqc7pj09NLc92alZLqy0MtVJnhN/nHJIqokyHHz5+S8wvIHcP5+efWQQMZBg52CkrTiyG1A8+f/L3bPPOdUNJMBx9+3u6WfsavoSrKiuZmSXts+aYp/y/Mj89kzHZvGI1p5ca2FmXJ7kVPcw4lxx7uF3Bi02kA23Tz1lN3BX5+JkpK04Tk/+fAyMSDkPeU4I58y9P3IpiIhEBWySNumTtiW+PL3n9i98rV9GYdfKOMHg6Tueu4VL/nuwZsJRodiN7iKMjAy0Fcflyf9fgRHJoWYgCY67r/dOP/739sTyLQ+qgxRA2e/HhSafmGVP/qB6glUhaYWzjSTQnN+PN0+YsvPa9QO3GN69q0/LNFCzTC6J0+bms+vZ0pab4++yQPD3y2/q/Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e67U4Y4zVlnf0k5fIGM+emTy6KXNP5SGGck0FoeD0Qb6cAEjwpMA1nLNpaQr0XoAAAAASUVORK5CYII=" alt="Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAFAAAAASCAIAAABD486dAAAEaElEQVR4nGP5//8/w0gCLAPtAHqDUQ9TBfy81hccPOkmu6Qkz+/Xr1mM03sn5lsLMwNl/n+5PKcgd+4dNu6fr39p58yYmKTNzUgHcRp4+P/vH39ZOFjApv95e/tXxMbL9focDP8/HS3WtfFIVb6/1l+E4eOBIq+qt32X94ZK/H84x03Ps1jlynR7PlqLI3mZGh7+++78yp6WGTcd5yzPUWMDibDK+mZGqHOAmIx8BgEOgv27dt757i/8dVf74o92G9wlQJEtF1xgmx/etqvFLvg/bcVDRBA+RvHwv7cHGiPDm/aozD9deq0kZ8LBXw59B1b7XqqOyZ9xhj143pGlsXIoGn6/Pr2su232aV6vgtatLRq8TFBxNgWvQETU//n5l4FHjJeZ4dvN7ed+SBXKgUOCgZFb2VT6x5TtN755MtBWPMSGG7uHmYTtc1O12vY+WjbheuniC75tenYt2alX/fI2XHRJUwmednBidKwExFO/Xh5f3Nm+8Ip4QHHvrk4lLpR8ggx+Pdw8bR+zW2u8GjvD5xd33zLwiPIyQ6SY+SR4Gd7cefHzJwNtxRkYcHgYWNo8OnXvD79lTl+5q+iP4//+MTArpnQV2Ah+3sHwn5WfnwPs29/35kY4135IWrRwd68MOy6v/nu9OcW7bN/te180MmcviVFgZfj36yvQbmY2ZqgWRhY2oPU/v/74wUBT8V//gHGJ3cP/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTrAqVsXoCXO/tfW0ZFfeLyuNt5Zkw+ZhJlHfead8Gf5/v7s620nH+Pju491a3OwMDF9//oE2df7//vmHgYGHm4ODgabibExIzkL18M/Hp+/9k/dSAGWCHw9P3mdQiAGzvz84+YhZyViGHRp0HLJOudMd054emtue7NQsF1Zameokz4k1rhk5lQMrsxvV6jqO1K6SVBNlOPjy819gPACl/nx69pFBxECCnYORtuLI7kHx8P+vd84851DXl2AFpshPN8+/5tXSAtWev19cuPlD0leJC9Ur7NL2WVPsU54fmd+e6dgsHtHakwupbH8/3rXti42/Jlw9IyPD319//nOqexhxrjj38DuDFhsoOd0+9ZTdwF2di5ORtuI4Pfzz0Zl7f+UywZH68+GpB//lIyGRDYxgJiUTWZSgggE2SZv0SdsSX57ec/sXNC39ebl3ylIel34rUFnx//OFJQuv83nXm/MyCrtWxgkGT9/x3C1c8t+DNROOCsVudBcBBgdtxXF5+P/Xu6efcahBI/jW+Ve8WjoiQAXAHHzz659/W5ccccixFWVm+HGhySdm2ZM/qB5nVUha4WwjCTKQVUxX4lC8iamUjCDrrw+vPgs5zT3cGgKqHPnsera05eb4uywQ/P3ym3r/zn5HfpB7aC2O3cOMwiH7foVA2EzisUf/xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUYefTS5h9Ko7s4wm143D0swaiHhzsAAKBmLxNlxrDXAAAAAElFTkSuQmCC" alt="xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUY" />

2,3,4

6

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEwAAAASCAIAAAB+ca/7AAADiUlEQVR4nGP5//8/w3AHLAPtAHqAUU+SAX6/OjK9OGc6x+Qzs225oWL/v1yeU5A79w4b98/Xv7RzZkxM0uZmpIM49Tz5//ePvywcLEBD/70/ObOue/v9RwcuvgpCUvDxQJFX1du+y3tDJf4/nOOm51mscmW6PR8DjcWRvEmBJ/++O7+yp2XGTcc5y3PU2IACHMrhPatTnvQbbW1F8uObXe2LP9ptcJdgBvLkggts88PbdrXYBf+nrXiICMKXKJ7892ZfQ1RE8x6NxRerblfm9W+9zWLbtn9npT4nqvd+vz69rLtt9mler4LWrS0avExgUSZOESGgHFpQfLu5/dwPqUI5DjCPkVvZVPrHlO03vnky0FY8xIYb7gYUTzKJOOYkqLftfTq/cX9q56nHtU26FjOX3SzUN+CAqvj18vjizvaFV8QDint3dSpxoSR9rODni7tvGXhEeZkhXGY+CV6GN3de/PzJQFtxBgYcnmRg+PHo1P2/ws7FM9q9RJh+nGdhYuYV44Hq/31vboRz7YekRQt398qwE/YeGPz79RVoHzMbM1Q9Iwsb0MqfX3/8YKCp+K9/wDjD7sn/X+6cf8ltG2MrAlTw/+v9c8851XTFWSGSrIrRE+Z+a+tpya68X1Yaby3JRoQnmdi42RkYvv78A21y/P/98w8DAw83BwcDTcXZmJAcgerJn49O3/8n7y0PTp0/n5y++1c2QwGWVBkYOWSdcqc7pj09NLc92alZLqy0MtVJnhN/nHJIqokyHHz5+S8wvIHcP5+efWQQMZBg52CkrTiyG1A8+f/L3bPPOdUNJMBx9+3u6WfsavoSrKiuZmSXts+aYp/y/Mj89kzHZvGI1p5ca2FmXJ7kVPcw4lxx7uF3Bi02kA23Tz1lN3BX5+JkpK04Tk/+fAyMSDkPeU4I58y9P3IpiIhEBWySNumTtiW+PL3n9i98rV9GYdfKOMHg6Tueu4VL/nuwZsJRodiN7iKMjAy0Fcflyf9fgRHJoWYgCY67r/dOP/739sTyLQ+qgxRA2e/HhSafmGVP/qB6glUhaYWzjSTQnN+PN0+YsvPa9QO3GN69q0/LNFCzTC6J0+bms+vZ0pab4++yQPD3y2/q/Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e67U4Y4zVlnf0k5fIGM+emTy6KXNP5SGGck0FoeD0Qb6cAEjwpMA1nLNpaQr0XoAAAAASUVORK5CYII=" alt="Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAFAAAAASCAIAAABD486dAAAEaElEQVR4nGP5//8/w0gCLAPtAHqDUQ9TBfy81hccPOkmu6Qkz+/Xr1mM03sn5lsLMwNl/n+5PKcgd+4dNu6fr39p58yYmKTNzUgHcRp4+P/vH39ZOFjApv95e/tXxMbL9focDP8/HS3WtfFIVb6/1l+E4eOBIq+qt32X94ZK/H84x03Ps1jlynR7PlqLI3mZGh7+++78yp6WGTcd5yzPUWMDibDK+mZGqHOAmIx8BgEOgv27dt757i/8dVf74o92G9wlQJEtF1xgmx/etqvFLvg/bcVDRBA+RvHwv7cHGiPDm/aozD9deq0kZ8LBXw59B1b7XqqOyZ9xhj143pGlsXIoGn6/Pr2su232aV6vgtatLRq8TFBxNgWvQETU//n5l4FHjJeZ4dvN7ed+SBXKgUOCgZFb2VT6x5TtN755MtBWPMSGG7uHmYTtc1O12vY+WjbheuniC75tenYt2alX/fI2XHRJUwmednBidKwExFO/Xh5f3Nm+8Ip4QHHvrk4lLpR8ggx+Pdw8bR+zW2u8GjvD5xd33zLwiPIyQ6SY+SR4Gd7cefHzJwNtxRkYcHgYWNo8OnXvD79lTl+5q+iP4//+MTArpnQV2Ah+3sHwn5WfnwPs29/35kY4135IWrRwd68MOy6v/nu9OcW7bN/te180MmcviVFgZfj36yvQbmY2ZqgWRhY2oPU/v/74wUBT8V//gHGJ3cP/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTrAqVsXoCXO/tfW0ZFfeLyuNt5Zkw+ZhJlHfead8Gf5/v7s620nH+Pju491a3OwMDF9//oE2df7//vmHgYGHm4ODgabibExIzkL18M/Hp+/9k/dSAGWCHw9P3mdQiAGzvz84+YhZyViGHRp0HLJOudMd054emtue7NQsF1Zameokz4k1rhk5lQMrsxvV6jqO1K6SVBNlOPjy819gPACl/nx69pFBxECCnYORtuLI7kHx8P+vd84851DXl2AFpshPN8+/5tXSAtWev19cuPlD0leJC9Ur7NL2WVPsU54fmd+e6dgsHtHakwupbH8/3rXti42/Jlw9IyPD319//nOqexhxrjj38DuDFhsoOd0+9ZTdwF2di5ORtuI4Pfzz0Zl7f+UywZH68+GpB//lIyGRDYxgJiUTWZSgggE2SZv0SdsSX57ec/sXNC39ebl3ylIel34rUFnx//OFJQuv83nXm/MyCrtWxgkGT9/x3C1c8t+DNROOCsVudBcBBgdtxXF5+P/Xu6efcahBI/jW+Ve8WjoiQAXAHHzz659/W5ccccixFWVm+HGhySdm2ZM/qB5nVUha4WwjCTKQVUxX4lC8iamUjCDrrw+vPgs5zT3cGgKqHPnsera05eb4uywQ/P3ym3r/zn5HfpB7aC2O3cOMwiH7foVA2EzisUf/xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUYefTS5h9Ko7s4wm143D0swaiHhzsAAKBmLxNlxrDXAAAAAElFTkSuQmCC" alt="xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUY" />

1,2,3,4

任意时刻|aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAASCAIAAABuEeEnAAAERklEQVR4nGP5//8/wxABLAPtABLA0Hbr3zeHJ5XULrrym5/7//vHd1/xBS09ON2Jn7rW/n51ZHpxznSOyWdm23JDxf5/uTynIHfuHTbun69/aefMmJikzc2Iz62/707zc2uVXnjxRJg0UO7byWLfFdysYKl/Xx5cfS6opcrPjO67j7evvpPQUeRlwuGy/79//GXhYIFY/O/9yZl13dvvPzpw8VUQkpqPB4q8qt72Xd4bKvH/4Rw3Pc9ilSvT7fmQXIvm1n+vDiw+/t9im4c0RIJd3jczWp0TzGb8d39abIPftvmeQsje/f9+b2H0yoidcxSxuPLvu/Mre1pm3HScszxHjQ0ixqEc3rM65Um/0dZWJFPe7Gpf/NFug7sEKCTkggts88PbdrXYhYgg7EIPVxYODsafZ1YdfOnmKw7UxSzhECIBlWLksymNbUuef9ulWI0VruH3nQXt9yNnOQoyohr0+/XpZd1ts0/zehW0bm3RQIQ5E6eIEFAazd5vN7ef+yFVKMcBsYpb2VT6x5TtN76F2HDD1aC5lUnUsy5DwXW6n/qNrN5JTQmmwsgRzqoYW6Xh1rYnER60/z8c6FiuVLlTBeF4hl8vjy/ubF94RTyguHdXpxIXmiewg58v7r5l4BHlhVrHzCfBy/DmzoufDAw43crAJOQy+cwx7eLMsmkpZvOn5S3b0BMgC3cIetCCAvVe5ExEoP6+NzfCufZD0qKFu3tl2IlyJRj8+/UV6CxmNmaoFkYWNqDLfn799Q/oJFxuBflJ2DJ7wbno/Dk5IemTgkNVbx/OUYK7FjloGT4c7FquWLkDKVBZFaMnzP3W1tOSXXm/rDTeWpKNOLcysXGzMzB8/fkHWjH9//3zDwMDDzcbcnZFceufz2++cYjwgaxmEjBMm7vp+Smd5k1Xv+UoIYosRNDmMS1svxsxAzWlMnLIOuVOd0x7emhue7JTs1xYaWWqkzwnwRDmkFQTZTj48vNfYFiBXPLp2UcGEQMJdmQ1yG79cak792jcolxYODFz8nMyCskLsTKgAEjQtq6VY12mUIEcqEguZpe2z5pin/L8yPz2TMdm8YjWnlxrYfSyDhlwqnsYca449/A7gxYbqKi9feopu4G7OhcOt/7/fOvY6aNaz9JV5EEx9+flrq6Jt3WzFhpxoZkLDto6o5Q/9Wcwsj8KYJO0SZ+0LfHl6T23fxFodTAKu1bGCQZP3/HcLVzy34M1E44KxW50F8FZF3BoRXosaHfW65GRE2X//eEDq17Jnn0ZBpyYJgODtr3s3Z8EjED9caHJJ2bZkz9oyhWSVjjbSELs+v1484QpO69dP3CL4d27+rRMAzXL5JI4bW4+u54tbbk5/i4LBH+//Kbev7PfkR81IJDcysirlzxlRzJ+/8PU8tlU1WIR5zCo23OlDq9WVlnf0k5fIGM+upk8emnzD6Xh1jm02y6DFwwltwIA7SWZTwgoH84AAAAASUVORK5CYII=" alt="8PU8tlU1WIR5zCo23OlDq9WVlnf0k5fIGM+upk8e" />

7

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEwAAAASCAIAAAB+ca/7AAADiUlEQVR4nGP5//8/w3AHLAPtAHqAUU+SAX6/OjK9OGc6x+Qzs225oWL/v1yeU5A79w4b98/Xv7RzZkxM0uZmpIM49Tz5//ePvywcLEBD/70/ObOue/v9RwcuvgpCUvDxQJFX1du+y3tDJf4/nOOm51mscmW6PR8DjcWRvEmBJ/++O7+yp2XGTcc5y3PU2IACHMrhPatTnvQbbW1F8uObXe2LP9ptcJdgBvLkggts88PbdrXYBf+nrXiICMKXKJ7892ZfQ1RE8x6NxRerblfm9W+9zWLbtn9npT4nqvd+vz69rLtt9mler4LWrS0avExgUSZOESGgHFpQfLu5/dwPqUI5DjCPkVvZVPrHlO03vnky0FY8xIYb7gYUTzKJOOYkqLftfTq/cX9q56nHtU26FjOX3SzUN+CAqvj18vjizvaFV8QDint3dSpxoSR9rODni7tvGXhEeZkhXGY+CV6GN3de/PzJQFtxBgYcnmRg+PHo1P2/ws7FM9q9RJh+nGdhYuYV44Hq/31vboRz7YekRQt398qwE/YeGPz79RVoHzMbM1Q9Iwsb0MqfX3/8YKCp+K9/wDjD7sn/X+6cf8ltG2MrAlTw/+v9c8851XTFWSGSrIrRE+Z+a+tpya68X1Yaby3JRoQnmdi42RkYvv78A21y/P/98w8DAw83BwcDTcXZmJAcgerJn49O3/8n7y0PTp0/n5y++1c2QwGWVBkYOWSdcqc7pj09NLc92alZLqy0MtVJnhN/nHJIqokyHHz5+S8wvIHcP5+efWQQMZBg52CkrTiyG1A8+f/L3bPPOdUNJMBx9+3u6WfsavoSrKiuZmSXts+aYp/y/Mj89kzHZvGI1p5ca2FmXJ7kVPcw4lxx7uF3Bi02kA23Tz1lN3BX5+JkpK04Tk/+fAyMSDkPeU4I58y9P3IpiIhEBWySNumTtiW+PL3n9i98rV9GYdfKOMHg6Tueu4VL/nuwZsJRodiN7iKMjAy0Fcflyf9fgRHJoWYgCY67r/dOP/739sTyLQ+qgxRA2e/HhSafmGVP/qB6glUhaYWzjSTQnN+PN0+YsvPa9QO3GN69q0/LNFCzTC6J0+bms+vZ0pab4++yQPD3y2/q/Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e67U4Y4zVlnf0k5fIGM+emTy6KXNP5SGGck0FoeD0Qb6cAEjwpMA1nLNpaQr0XoAAAAASUVORK5CYII=" alt="Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAFAAAAASCAIAAABD486dAAAEaElEQVR4nGP5//8/w0gCLAPtAHqDUQ9TBfy81hccPOkmu6Qkz+/Xr1mM03sn5lsLMwNl/n+5PKcgd+4dNu6fr39p58yYmKTNzUgHcRp4+P/vH39ZOFjApv95e/tXxMbL9focDP8/HS3WtfFIVb6/1l+E4eOBIq+qt32X94ZK/H84x03Ps1jlynR7PlqLI3mZGh7+++78yp6WGTcd5yzPUWMDibDK+mZGqHOAmIx8BgEOgv27dt757i/8dVf74o92G9wlQJEtF1xgmx/etqvFLvg/bcVDRBA+RvHwv7cHGiPDm/aozD9deq0kZ8LBXw59B1b7XqqOyZ9xhj143pGlsXIoGn6/Pr2su232aV6vgtatLRq8TFBxNgWvQETU//n5l4FHjJeZ4dvN7ed+SBXKgUOCgZFb2VT6x5TtN755MtBWPMSGG7uHmYTtc1O12vY+WjbheuniC75tenYt2alX/fI2XHRJUwmednBidKwExFO/Xh5f3Nm+8Ip4QHHvrk4lLpR8ggx+Pdw8bR+zW2u8GjvD5xd33zLwiPIyQ6SY+SR4Gd7cefHzJwNtxRkYcHgYWNo8OnXvD79lTl+5q+iP4//+MTArpnQV2Ah+3sHwn5WfnwPs29/35kY4135IWrRwd68MOy6v/nu9OcW7bN/te180MmcviVFgZfj36yvQbmY2ZqgWRhY2oPU/v/74wUBT8V//gHGJ3cP/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTrAqVsXoCXO/tfW0ZFfeLyuNt5Zkw+ZhJlHfead8Gf5/v7s620nH+Pju491a3OwMDF9//oE2df7//vmHgYGHm4ODgabibExIzkL18M/Hp+/9k/dSAGWCHw9P3mdQiAGzvz84+YhZyViGHRp0HLJOudMd054emtue7NQsF1Zameokz4k1rhk5lQMrsxvV6jqO1K6SVBNlOPjy819gPACl/nx69pFBxECCnYORtuLI7kHx8P+vd84851DXl2AFpshPN8+/5tXSAtWev19cuPlD0leJC9Ur7NL2WVPsU54fmd+e6dgsHtHakwupbH8/3rXti42/Jlw9IyPD319//nOqexhxrjj38DuDFhsoOd0+9ZTdwF2di5ORtuI4Pfzz0Zl7f+UywZH68+GpB//lIyGRDYxgJiUTWZSgggE2SZv0SdsSX57ec/sXNC39ebl3ylIel34rUFnx//OFJQuv83nXm/MyCrtWxgkGT9/x3C1c8t+DNROOCsVudBcBBgdtxXF5+P/Xu6efcahBI/jW+Ve8WjoiQAXAHHzz659/W5ccccixFWVm+HGhySdm2ZM/qB5nVUha4WwjCTKQVUxX4lC8iamUjCDrrw+vPgs5zT3cGgKqHPnsera05eb4uywQ/P3ym3r/zn5HfpB7aC2O3cOMwiH7foVA2EzisUf/xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUYefTS5h9Ko7s4wm143D0swaiHhzsAAKBmLxNlxrDXAAAAAElFTkSuQmCC" alt="xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUY" />

1,2,3,4

任意时刻|aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAASCAIAAABuEeEnAAAERklEQVR4nGP5//8/wxABLAPtABLA0Hbr3zeHJ5XULrrym5/7//vHd1/xBS09ON2Jn7rW/n51ZHpxznSOyWdm23JDxf5/uTynIHfuHTbun69/aefMmJikzc2Iz62/707zc2uVXnjxRJg0UO7byWLfFdysYKl/Xx5cfS6opcrPjO67j7evvpPQUeRlwuGy/79//GXhYIFY/O/9yZl13dvvPzpw8VUQkpqPB4q8qt72Xd4bKvH/4Rw3Pc9ilSvT7fmQXIvm1n+vDiw+/t9im4c0RIJd3jczWp0TzGb8d39abIPftvmeQsje/f9+b2H0yoidcxSxuPLvu/Mre1pm3HScszxHjQ0ixqEc3rM65Um/0dZWJFPe7Gpf/NFug7sEKCTkggts88PbdrXYhYgg7EIPVxYODsafZ1YdfOnmKw7UxSzhECIBlWLksymNbUuef9ulWI0VruH3nQXt9yNnOQoyohr0+/XpZd1ts0/zehW0bm3RQIQ5E6eIEFAazd5vN7ef+yFVKMcBsYpb2VT6x5TtN76F2HDD1aC5lUnUsy5DwXW6n/qNrN5JTQmmwsgRzqoYW6Xh1rYnER60/z8c6FiuVLlTBeF4hl8vjy/ubF94RTyguHdXpxIXmiewg58v7r5l4BHlhVrHzCfBy/DmzoufDAw43crAJOQy+cwx7eLMsmkpZvOn5S3b0BMgC3cIetCCAvVe5ExEoP6+NzfCufZD0qKFu3tl2IlyJRj8+/UV6CxmNmaoFkYWNqDLfn799Q/oJFxuBflJ2DJ7wbno/Dk5IemTgkNVbx/OUYK7FjloGT4c7FquWLkDKVBZFaMnzP3W1tOSXXm/rDTeWpKNOLcysXGzMzB8/fkHWjH9//3zDwMDDzcbcnZFceufz2++cYjwgaxmEjBMm7vp+Smd5k1Xv+UoIYosRNDmMS1svxsxAzWlMnLIOuVOd0x7emhue7JTs1xYaWWqkzwnwRDmkFQTZTj48vNfYFiBXPLp2UcGEQMJdmQ1yG79cak792jcolxYODFz8nMyCskLsTKgAEjQtq6VY12mUIEcqEguZpe2z5pin/L8yPz2TMdm8YjWnlxrYfSyDhlwqnsYca449/A7gxYbqKi9feopu4G7OhcOt/7/fOvY6aNaz9JV5EEx9+flrq6Jt3WzFhpxoZkLDto6o5Q/9Wcwsj8KYJO0SZ+0LfHl6T23fxFodTAKu1bGCQZP3/HcLVzy34M1E44KxW50F8FZF3BoRXosaHfW65GRE2X//eEDq17Jnn0ZBpyYJgODtr3s3Z8EjED9caHJJ2bZkz9oyhWSVjjbSELs+v1484QpO69dP3CL4d27+rRMAzXL5JI4bW4+u54tbbk5/i4LBH+//Kbev7PfkR81IJDcysirlzxlRzJ+/8PU8tlU1WIR5zCo23OlDq9WVlnf0k5fIGM+upk8emnzD6Xh1jm02y6DFwwltwIA7SWZTwgoH84AAAAASUVORK5CYII=" alt="8PU8tlU1WIR5zCo23OlDq9WVlnf0k5fIGM+upk8e" />

8

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEwAAAASCAIAAAB+ca/7AAADiUlEQVR4nGP5//8/w3AHLAPtAHqAUU+SAX6/OjK9OGc6x+Qzs225oWL/v1yeU5A79w4b98/Xv7RzZkxM0uZmpIM49Tz5//ePvywcLEBD/70/ObOue/v9RwcuvgpCUvDxQJFX1du+y3tDJf4/nOOm51mscmW6PR8DjcWRvEmBJ/++O7+yp2XGTcc5y3PU2IACHMrhPatTnvQbbW1F8uObXe2LP9ptcJdgBvLkggts88PbdrXYBf+nrXiICMKXKJ7892ZfQ1RE8x6NxRerblfm9W+9zWLbtn9npT4nqvd+vz69rLtt9mler4LWrS0avExgUSZOESGgHFpQfLu5/dwPqUI5DjCPkVvZVPrHlO03vnky0FY8xIYb7gYUTzKJOOYkqLftfTq/cX9q56nHtU26FjOX3SzUN+CAqvj18vjizvaFV8QDint3dSpxoSR9rODni7tvGXhEeZkhXGY+CV6GN3de/PzJQFtxBgYcnmRg+PHo1P2/ws7FM9q9RJh+nGdhYuYV44Hq/31vboRz7YekRQt398qwE/YeGPz79RVoHzMbM1Q9Iwsb0MqfX3/8YKCp+K9/wDjD7sn/X+6cf8ltG2MrAlTw/+v9c8851XTFWSGSrIrRE+Z+a+tpya68X1Yaby3JRoQnmdi42RkYvv78A21y/P/98w8DAw83BwcDTcXZmJAcgerJn49O3/8n7y0PTp0/n5y++1c2QwGWVBkYOWSdcqc7pj09NLc92alZLqy0MtVJnhN/nHJIqokyHHz5+S8wvIHcP5+efWQQMZBg52CkrTiyG1A8+f/L3bPPOdUNJMBx9+3u6WfsavoSrKiuZmSXts+aYp/y/Mj89kzHZvGI1p5ca2FmXJ7kVPcw4lxx7uF3Bi02kA23Tz1lN3BX5+JkpK04Tk/+fAyMSDkPeU4I58y9P3IpiIhEBWySNumTtiW+PL3n9i98rV9GYdfKOMHg6Tueu4VL/nuwZsJRodiN7iKMjAy0Fcflyf9fgRHJoWYgCY67r/dOP/739sTyLQ+qgxRA2e/HhSafmGVP/qB6glUhaYWzjSTQnN+PN0+YsvPa9QO3GN69q0/LNFCzTC6J0+bms+vZ0pab4++yQPD3y2/q/Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e67U4Y4zVlnf0k5fIGM+emTy6KXNP5SGGck0FoeD0Qb6cAEjwpMA1nLNpaQr0XoAAAAASUVORK5CYII=" alt="Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAFAAAAASCAIAAABD486dAAAEaElEQVR4nGP5//8/w0gCLAPtAHqDUQ9TBfy81hccPOkmu6Qkz+/Xr1mM03sn5lsLMwNl/n+5PKcgd+4dNu6fr39p58yYmKTNzUgHcRp4+P/vH39ZOFjApv95e/tXxMbL9focDP8/HS3WtfFIVb6/1l+E4eOBIq+qt32X94ZK/H84x03Ps1jlynR7PlqLI3mZGh7+++78yp6WGTcd5yzPUWMDibDK+mZGqHOAmIx8BgEOgv27dt757i/8dVf74o92G9wlQJEtF1xgmx/etqvFLvg/bcVDRBA+RvHwv7cHGiPDm/aozD9deq0kZ8LBXw59B1b7XqqOyZ9xhj143pGlsXIoGn6/Pr2su232aV6vgtatLRq8TFBxNgWvQETU//n5l4FHjJeZ4dvN7ed+SBXKgUOCgZFb2VT6x5TtN755MtBWPMSGG7uHmYTtc1O12vY+WjbheuniC75tenYt2alX/fI2XHRJUwmednBidKwExFO/Xh5f3Nm+8Ip4QHHvrk4lLpR8ggx+Pdw8bR+zW2u8GjvD5xd33zLwiPIyQ6SY+SR4Gd7cefHzJwNtxRkYcHgYWNo8OnXvD79lTl+5q+iP4//+MTArpnQV2Ah+3sHwn5WfnwPs29/35kY4135IWrRwd68MOy6v/nu9OcW7bN/te180MmcviVFgZfj36yvQbmY2ZqgWRhY2oPU/v/74wUBT8V//gHGJ3cP/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTrAqVsXoCXO/tfW0ZFfeLyuNt5Zkw+ZhJlHfead8Gf5/v7s620nH+Pju491a3OwMDF9//oE2df7//vmHgYGHm4ODgabibExIzkL18M/Hp+/9k/dSAGWCHw9P3mdQiAGzvz84+YhZyViGHRp0HLJOudMd054emtue7NQsF1Zameokz4k1rhk5lQMrsxvV6jqO1K6SVBNlOPjy819gPACl/nx69pFBxECCnYORtuLI7kHx8P+vd84851DXl2AFpshPN8+/5tXSAtWev19cuPlD0leJC9Ur7NL2WVPsU54fmd+e6dgsHtHakwupbH8/3rXti42/Jlw9IyPD319//nOqexhxrjj38DuDFhsoOd0+9ZTdwF2di5ORtuI4Pfzz0Zl7f+UywZH68+GpB//lIyGRDYxgJiUTWZSgggE2SZv0SdsSX57ec/sXNC39ebl3ylIel34rUFnx//OFJQuv83nXm/MyCrtWxgkGT9/x3C1c8t+DNROOCsVudBcBBgdtxXF5+P/Xu6efcahBI/jW+Ve8WjoiQAXAHHzz659/W5ccccixFWVm+HGhySdm2ZM/qB5nVUha4WwjCTKQVUxX4lC8iamUjCDrrw+vPgs5zT3cGgKqHPnsera05eb4uywQ/P3ym3r/zn5HfpB7aC2O3cOMwiH7foVA2EzisUf/xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUYefTS5h9Ko7s4wm143D0swaiHhzsAAKBmLxNlxrDXAAAAAElFTkSuQmCC" alt="xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUY" />

1,2,3,4

9

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEwAAAASCAIAAAB+ca/7AAADiUlEQVR4nGP5//8/w3AHLAPtAHqAUU+SAX6/OjK9OGc6x+Qzs225oWL/v1yeU5A79w4b98/Xv7RzZkxM0uZmpIM49Tz5//ePvywcLEBD/70/ObOue/v9RwcuvgpCUvDxQJFX1du+y3tDJf4/nOOm51mscmW6PR8DjcWRvEmBJ/++O7+yp2XGTcc5y3PU2IACHMrhPatTnvQbbW1F8uObXe2LP9ptcJdgBvLkggts88PbdrXYBf+nrXiICMKXKJ7892ZfQ1RE8x6NxRerblfm9W+9zWLbtn9npT4nqvd+vz69rLtt9mler4LWrS0avExgUSZOESGgHFpQfLu5/dwPqUI5DjCPkVvZVPrHlO03vnky0FY8xIYb7gYUTzKJOOYkqLftfTq/cX9q56nHtU26FjOX3SzUN+CAqvj18vjizvaFV8QDint3dSpxoSR9rODni7tvGXhEeZkhXGY+CV6GN3de/PzJQFtxBgYcnmRg+PHo1P2/ws7FM9q9RJh+nGdhYuYV44Hq/31vboRz7YekRQt398qwE/YeGPz79RVoHzMbM1Q9Iwsb0MqfX3/8YKCp+K9/wDjD7sn/X+6cf8ltG2MrAlTw/+v9c8851XTFWSGSrIrRE+Z+a+tpya68X1Yaby3JRoQnmdi42RkYvv78A21y/P/98w8DAw83BwcDTcXZmJAcgerJn49O3/8n7y0PTp0/n5y++1c2QwGWVBkYOWSdcqc7pj09NLc92alZLqy0MtVJnhN/nHJIqokyHHz5+S8wvIHcP5+efWQQMZBg52CkrTiyG1A8+f/L3bPPOdUNJMBx9+3u6WfsavoSrKiuZmSXts+aYp/y/Mj89kzHZvGI1p5ca2FmXJ7kVPcw4lxx7uF3Bi02kA23Tz1lN3BX5+JkpK04Tk/+fAyMSDkPeU4I58y9P3IpiIhEBWySNumTtiW+PL3n9i98rV9GYdfKOMHg6Tueu4VL/nuwZsJRodiN7iKMjAy0Fcflyf9fgRHJoWYgCY67r/dOP/739sTyLQ+qgxRA2e/HhSafmGVP/qB6glUhaYWzjSTQnN+PN0+YsvPa9QO3GN69q0/LNFCzTC6J0+bms+vZ0pab4++yQPD3y2/q/Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e67U4Y4zVlnf0k5fIGM+emTy6KXNP5SGGck0FoeD0Qb6cAEjwpMA1nLNpaQr0XoAAAAASUVORK5CYII=" alt="Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAFAAAAASCAIAAABD486dAAAEaElEQVR4nGP5//8/w0gCLAPtAHqDUQ9TBfy81hccPOkmu6Qkz+/Xr1mM03sn5lsLMwNl/n+5PKcgd+4dNu6fr39p58yYmKTNzUgHcRp4+P/vH39ZOFjApv95e/tXxMbL9focDP8/HS3WtfFIVb6/1l+E4eOBIq+qt32X94ZK/H84x03Ps1jlynR7PlqLI3mZGh7+++78yp6WGTcd5yzPUWMDibDK+mZGqHOAmIx8BgEOgv27dt757i/8dVf74o92G9wlQJEtF1xgmx/etqvFLvg/bcVDRBA+RvHwv7cHGiPDm/aozD9deq0kZ8LBXw59B1b7XqqOyZ9xhj143pGlsXIoGn6/Pr2su232aV6vgtatLRq8TFBxNgWvQETU//n5l4FHjJeZ4dvN7ed+SBXKgUOCgZFb2VT6x5TtN755MtBWPMSGG7uHmYTtc1O12vY+WjbheuniC75tenYt2alX/fI2XHRJUwmednBidKwExFO/Xh5f3Nm+8Ip4QHHvrk4lLpR8ggx+Pdw8bR+zW2u8GjvD5xd33zLwiPIyQ6SY+SR4Gd7cefHzJwNtxRkYcHgYWNo8OnXvD79lTl+5q+iP4//+MTArpnQV2Ah+3sHwn5WfnwPs29/35kY4135IWrRwd68MOy6v/nu9OcW7bN/te180MmcviVFgZfj36yvQbmY2ZqgWRhY2oPU/v/74wUBT8V//gHGJ3cP/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTrAqVsXoCXO/tfW0ZFfeLyuNt5Zkw+ZhJlHfead8Gf5/v7s620nH+Pju491a3OwMDF9//oE2df7//vmHgYGHm4ODgabibExIzkL18M/Hp+/9k/dSAGWCHw9P3mdQiAGzvz84+YhZyViGHRp0HLJOudMd054emtue7NQsF1Zameokz4k1rhk5lQMrsxvV6jqO1K6SVBNlOPjy819gPACl/nx69pFBxECCnYORtuLI7kHx8P+vd84851DXl2AFpshPN8+/5tXSAtWev19cuPlD0leJC9Ur7NL2WVPsU54fmd+e6dgsHtHakwupbH8/3rXti42/Jlw9IyPD319//nOqexhxrjj38DuDFhsoOd0+9ZTdwF2di5ORtuI4Pfzz0Zl7f+UywZH68+GpB//lIyGRDYxgJiUTWZSgggE2SZv0SdsSX57ec/sXNC39ebl3ylIel34rUFnx//OFJQuv83nXm/MyCrtWxgkGT9/x3C1c8t+DNROOCsVudBcBBgdtxXF5+P/Xu6efcahBI/jW+Ve8WjoiQAXAHHzz659/W5ccccixFWVm+HGhySdm2ZM/qB5nVUha4WwjCTKQVUxX4lC8iamUjCDrrw+vPgs5zT3cGgKqHPnsera05eb4uywQ/P3ym3r/zn5HfpB7aC2O3cOMwiH7foVA2EzisUf/xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUYefTS5h9Ko7s4wm143D0swaiHhzsAAKBmLxNlxrDXAAAAAElFTkSuQmCC" alt="xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUY" />

1,2,3,4

10

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEwAAAASCAIAAAB+ca/7AAADiUlEQVR4nGP5//8/w3AHLAPtAHqAUU+SAX6/OjK9OGc6x+Qzs225oWL/v1yeU5A79w4b98/Xv7RzZkxM0uZmpIM49Tz5//ePvywcLEBD/70/ObOue/v9RwcuvgpCUvDxQJFX1du+y3tDJf4/nOOm51mscmW6PR8DjcWRvEmBJ/++O7+yp2XGTcc5y3PU2IACHMrhPatTnvQbbW1F8uObXe2LP9ptcJdgBvLkggts88PbdrXYBf+nrXiICMKXKJ7892ZfQ1RE8x6NxRerblfm9W+9zWLbtn9npT4nqvd+vz69rLtt9mler4LWrS0avExgUSZOESGgHFpQfLu5/dwPqUI5DjCPkVvZVPrHlO03vnky0FY8xIYb7gYUTzKJOOYkqLftfTq/cX9q56nHtU26FjOX3SzUN+CAqvj18vjizvaFV8QDint3dSpxoSR9rODni7tvGXhEeZkhXGY+CV6GN3de/PzJQFtxBgYcnmRg+PHo1P2/ws7FM9q9RJh+nGdhYuYV44Hq/31vboRz7YekRQt398qwE/YeGPz79RVoHzMbM1Q9Iwsb0MqfX3/8YKCp+K9/wDjD7sn/X+6cf8ltG2MrAlTw/+v9c8851XTFWSGSrIrRE+Z+a+tpya68X1Yaby3JRoQnmdi42RkYvv78A21y/P/98w8DAw83BwcDTcXZmJAcgerJn49O3/8n7y0PTp0/n5y++1c2QwGWVBkYOWSdcqc7pj09NLc92alZLqy0MtVJnhN/nHJIqokyHHz5+S8wvIHcP5+efWQQMZBg52CkrTiyG1A8+f/L3bPPOdUNJMBx9+3u6WfsavoSrKiuZmSXts+aYp/y/Mj89kzHZvGI1p5ca2FmXJ7kVPcw4lxx7uF3Bi02kA23Tz1lN3BX5+JkpK04Tk/+fAyMSDkPeU4I58y9P3IpiIhEBWySNumTtiW+PL3n9i98rV9GYdfKOMHg6Tueu4VL/nuwZsJRodiN7iKMjAy0Fcflyf9fgRHJoWYgCY67r/dOP/739sTyLQ+qgxRA2e/HhSafmGVP/qB6glUhaYWzjSTQnN+PN0+YsvPa9QO3GN69q0/LNFCzTC6J0+bms+vZ0pab4++yQPD3y2/q/Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e67U4Y4zVlnf0k5fIGM+emTy6KXNP5SGGck0FoeD0Qb6cAEjwpMA1nLNpaQr0XoAAAAASUVORK5CYII=" alt="Tv7HflBbqC1OHZPMgqH7PsVAuMJBe7+jRJFHAZ1e" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAFAAAAASCAIAAABD486dAAAEaElEQVR4nGP5//8/w0gCLAPtAHqDUQ9TBfy81hccPOkmu6Qkz+/Xr1mM03sn5lsLMwNl/n+5PKcgd+4dNu6fr39p58yYmKTNzUgHcRp4+P/vH39ZOFjApv95e/tXxMbL9focDP8/HS3WtfFIVb6/1l+E4eOBIq+qt32X94ZK/H84x03Ps1jlynR7PlqLI3mZGh7+++78yp6WGTcd5yzPUWMDibDK+mZGqHOAmIx8BgEOgv27dt757i/8dVf74o92G9wlQJEtF1xgmx/etqvFLvg/bcVDRBA+RvHwv7cHGiPDm/aozD9deq0kZ8LBXw59B1b7XqqOyZ9xhj143pGlsXIoGn6/Pr2su232aV6vgtatLRq8TFBxNgWvQETU//n5l4FHjJeZ4dvN7ed+SBXKgUOCgZFb2VT6x5TtN755MtBWPMSGG7uHmYTtc1O12vY+WjbheuniC75tenYt2alX/fI2XHRJUwmednBidKwExFO/Xh5f3Nm+8Ip4QHHvrk4lLpR8ggx+Pdw8bR+zW2u8GjvD5xd33zLwiPIyQ6SY+SR4Gd7cefHzJwNtxRkYcHgYWNo8OnXvD79lTl+5q+iP4//+MTArpnQV2Ah+3sHwn5WfnwPs29/35kY4135IWrRwd68MOy6v/nu9OcW7bN/te180MmcviVFgZfj36yvQbmY2ZqgWRhY2oPU/v/74wUBT8V//gHGJ3cP/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTrAqVsXoCXO/tfW0ZFfeLyuNt5Zkw+ZhJlHfead8Gf5/v7s620nH+Pju491a3OwMDF9//oE2df7//vmHgYGHm4ODgabibExIzkL18M/Hp+/9k/dSAGWCHw9P3mdQiAGzvz84+YhZyViGHRp0HLJOudMd054emtue7NQsF1Zameokz4k1rhk5lQMrsxvV6jqO1K6SVBNlOPjy819gPACl/nx69pFBxECCnYORtuLI7kHx8P+vd84851DXl2AFpshPN8+/5tXSAtWev19cuPlD0leJC9Ur7NL2WVPsU54fmd+e6dgsHtHakwupbH8/3rXti42/Jlw9IyPD319//nOqexhxrjj38DuDFhsoOd0+9ZTdwF2di5ORtuI4Pfzz0Zl7f+UywZH68+GpB//lIyGRDYxgJiUTWZSgggE2SZv0SdsSX57ec/sXNC39ebl3ylIel34rUFnx//OFJQuv83nXm/MyCrtWxgkGT9/x3C1c8t+DNROOCsVudBcBBgdtxXF5+P/Xu6efcahBI/jW+Ve8WjoiQAXAHHzz659/W5ccccixFWVm+HGhySdm2ZM/qB5nVUha4WwjCTKQVUxX4lC8iamUjCDrrw+vPgs5zT3cGgKqHPnsera05eb4uywQ/P3ym3r/zn5HfpB7aC2O3cOMwiH7foVA2EzisUf/xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUYefTS5h9Ko7s4wm143D0swaiHhzsAAKBmLxNlxrDXAAAAAElFTkSuQmCC" alt="xEK9olZ29X8ZQh2HQd2eK3XYYhtmqFzM4rMxWKUY" />

1,2,3,4

对于所有数据aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAGAAAAASCAIAAAArEEylAAADuElEQVR4nGP5//8/wyjADVgG2gGDHYwGEAGALYB+vzoyvThnOsfkM7NtuenrHGxW//9yeU5B7tw7bNw/X//SzpkxMUmbm5EO4hCAFkD/3p+cWde9/f6jAxdfBRH2z//fP/6ycLAwElZJWDsOq/9/PFDkVfW27/LeUIn/D+e46XkWq1yZbs/HQGNxmJ/QUxCHcnjP6pQn/UZbW/H67e+78yt7WmbcdJyzPEeNjeSgwaYdq9X/3+xqX/zRboO7BDOQJxdcYJsf3rarxS74P23FQ0QYsQYQE6eIEDCh4/Pb79enl3W3zT7N61XQurVFg5cJIvzvzb6GqIjmPRqLL1bdrszr33qbxbZt/85KfU6itOOy+tvN7ed+SBXKcYB5jNzKptI/pmy/8c2TgbbiITbcWAMIL/j18vjizvaFV8QDint3dSpxoeQsJhHHnAT1tr1P5zfuT+089bi2Sddi5rKbhfoGHMRoxwV+vrj7loFHlJcZwmXmk+BleHPnxc+fDLQVZ2AgMYB+35sb4Vz7IWnRwt29MuxY/fbj0an7f4Wdi2e0e4kw/TjPwsTMK8bDTLR2rODfr69AtzKzMUO1MLKwAV388+uPHww0Ff/1DxjlJAUQq2L0hLnf2npasivvl5XGW0tilDv/v9w5/5LbNsZWBGjy/6/3zz3nVNMVZyVWO3bAxMbNzsDw9ecfaGv2/++ffxgYeLg5OBhoKs4Gz/lEZzFGDlmn3OmOaU8PzW1PdmqWCyutTHWS50Qkhp+PTt//J+8tD85RP5+cvvtXNkOBg2jtOACHpJoow8GXn/8C4xnI/fPp2UcGEQMJdg5G2orDHUBiQ5GRXdo+a4p9yvMj89szHZvFI1p7cq2FQUb//3L37HNOdQMJcJr5dvf0M3Y1fQlWYrXjApzqHkacK849/M6gxQay5Papp+wG7upcnIy0FSc3gKCATdImfdK2xJen99z+BU2cPx8DE5CchzwnhHPm3h+5FEQCIqgdF2AUdq2MEwyevuO5W7jkvwdrJhwVit3oLsLIyEBbcVwB9Pvx5glTdl67fuAWw7t39WmZBmqWySVx2twMPy40+cQse/IHVTmrQtIKZxtJFlChA0xAHGoGkuA08/Xe6cf/3p5YvuVBdZACqLghpB2P1Xx2PVvacnP8XRYI/n75Tb1/Z78jP8j9tBbHHkCssr6lnb5Axny0mOQwqNtzpQ5fTIfs+xUC4wkF7v6NkjQIacdnNSOPXtr8Q2mYVtJYHAJGO6sEwGgAEQCjAUQAAAC2t0I7lJxTPQAAAABJRU5ErkJggg==" alt="Z78jP8j9tBbHHkCssr6lnb5Axny0mOQwqNtzpQ5f" />aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAGQAAAASCAIAAAAi++zfAAAE6ElEQVR4nGP5//8/wyggDrAMtAOGEhgNLBIAtsD6/erI9OKc6RyTz8y25aa7i35e6wsOnnSTXVKS5/fr1yzG6b0T862FmYEy/79cnlOQO/cOG/fP17+0c2ZMTNLmZqSDOBygBda/9ydn1nVvv//owMVXQYQ99v/3j78sHCyMhFUSb86ft7d/RWy8XK/PwfD/09FiXRuPVOX7a/1FGD4eKPKqett3eW+oxP+Hc9z0PItVrky356O1OJLn0FMWh3J4z+qUJ/1GW1vxeu/vu/Mre1pm3HScszxHjY38YMI0h1XWNzNCnQPEZOQzCHAQ7N+18853f+Gvu9oXf7Tb4C4BSmRywQW2+eFtu1rsgv/TVjxEBBFaaIHFxCkiBMyH+Lz3+/XpZd1ts0/zehW0bm3R4GWCCP97e6AxMrxpj8r806XXSnImHPzl0Hdgte+l6pj8GWfYg+cdWRorx0KEOQxsCl6BcEX///z8y8AjxsvM8O3m9nM/pArlwKHIwMitbCr9Y8r2G988GWgrHmKDKIlIKeB/vTy+uLN94RXxgOLeXZ1KXCi5j0nYPjdVq23vo2UTrpcuvuDbpmfXkp161S9vw0WXNJXgaQcnRsdKMBE2B8XCh5un7WN2a41XY2f4/OLuWwYeUV5miBQznwQvw5s7L37+ZKCtOAMD6YH1+97cCOfaD0mLFu7ulWHH6r2fj07d+8NvmdNX7ir64/i/fwzMiildBTaCn3cw/Gfl5+dgItIcIPj3enOKd9m+2/e+aGTOXhKjwMrw79dXoLuZ2ZihWhhZ2IBO//n1xw8Gmor/+gdMB6QGFqti9IS539p6WrIr75eVxltLYpRT/7/cPfOcxynZUZSJ4d+n25feCLrHWwsyMvx+fuH2T6lABU4izQEBJlHfead8Gf5/v7s620nH+Pju491a3OwMDF9//oE2of///vmHgYGHm4ODgabibExIziI6GzJyyDrlTndMe3pobnuyU7NcWGllqpM8JyJt/Hx8+t4/eS8FUKb/8fDkfQaFGDD7+4OTj5iVjGXYiTQH2U5O5cDK7Ea1uo4jtask1UQZDr78/BcY/0CpP5+efWQQMZBg52CkrTiye0hslDKyS9tnTbFPeX5kfnumY7N4RGtPLrQR9PXOmecc6voSrMBc9Onm+de8Wlogid8vLtz8IemrxEWkOb8f79r2xcZfE66ekZHh768//znVPYw4V5x7+J1Biw2UjG+fespu4K7OxclIW3EKAgsK2CRt0idtS3x5es/tX9B0+/PRmXt/5TLBiennw1MP/stHQhIZMGExKZnIshNpzp+Xe6cs5XHptwKVq/8/X1iy8Dqfd705L6Owa2WcYPD0Hc/dwiX/PVgz4ahQ7EZ3EWBQ0lYcT2D9frx5wpSd164fuMXw7l19WqaBmmVySZw2N8OPC00+Mcue/EFVzqqQtMLZRpIFlLDunn7GoQZNWLfOv+LV0hEBigNLrJtf//zbuuSIQ46tKDNBcxhYxXQlDsWbmErJCLL++vDqs5DT3MOtIaDGD59dz5a23Bx/lwWCv19+U+/f2e/ID/ILrcVxBhawRVja6QtkzEdLAxwGdXuu1GFLHRDAKByy71cIhM0kHnv0TyzUQLWyq//LiDeHgUUuZvHZGOx28OilzT+URndxhNvwuHsUoIHRwCIBjAYWCQAAmhCjmqLCKYIAAAAASUVORK5CYII=" alt="LiDeHgUUuZvHZGOx28OilzT+URndxhNvwuHsUoIH" />aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAGoAAAASCAIAAAA8MtxsAAAGAUlEQVR4nGP5//8/wyggF7AMtAOGNhgNPooAtuD7/erI9OKc6RyTz8y25aa7i4YUQAu+f+9Pzqzr3n7/0YGLr4II6/7/+8dfFg4WRtq4bSAAiT5CT30cyuE9q1Oe9BttbcWr7++78yt7WmbcdJyzPEeNjSyXDjJAlo/Qgo+JU0QImHvx6fj9+vSy7rbZp3m9Clq3tmjwMsFl/r07NiErpniD0tIHu6Ik/t6d5mrQpLz97lwbnCXArwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpZmx+/Ht0YlpQcWb9Na93B0IdOmnHQGSfp8WPt8bIowlwfz/cmluUWzWHI4Zj48nSTMx/LrZZ69b8m86mvk4fPTvzb6GqIjmPRqLL1bdrszr33qbxbZt/85KfU6cwYcX/Hp5fHFn+8Ir4gHFvbs6lbjQHcwkZFU4dcLhbcFTNj8NT2K/efWvX2+9Bb7Sk00hrKF29WyfE7e+/NdjZ2RTcHVQnPpJUxB72AEBs7Cpl5Fg6XlTJbCxv59fuPVD0keZG3tmY+TRS2osnje/6NC970nS3Axs8vaWcvK/dODm4/URk4hjToJ6296n8xv3p3aeelzbpGsxc9nNQn0DDrgaYoPv9725Ec61H5IWLdzdK8OOs2hgFHYqDBdymjxr4b3zu7RmzIuSI2QBp6q98t+u4w9+hghz/Ly7eb9o9hITLjzqfzw4/ZhFyUSWHcT5/vDUIyYlUwgHK2AS1LWW+rj7wqs/toos3y6tOKRWs86Yi0gf/Xh06v5fYefiGe1eIkw/zrMwMfOK8aBELbHBx6oYPWHut7aeluzK+2Wl8daSuEoHHrPsJNk5Lb1BZ05maWMkUEzAImZoIvTi1I2P/w2/7GjdZNSyF2/B8/vFxVs/pfyVIYnv5YWb3yU9lXnwWMOhYKfNOuvQne+5Mi/n1pwO7m+BxihhH/3/cuf8S27bGFsRYHb+//X+ueecarrirCiuJ+g/KGDkkHXKne6Y9vTQ3PZkp2a5sNLKVCd5TnSH/3tzdOVxZk6Gt8+/MxBXfXEo26sxbj12/73ezu4PGcvs+PFq+/Hg1GNmZVMZNijnEZMivsQHBDwaDorf559+9PB943Kd1p1acMUEffTz0en7/+S95cF59eeT03f/ymYocKAYTmKzmZFd2j5rin3K8yPz2zMdm8UjWntyrYVh6fnfuwO1sdMl+rdOztMrmnCg3dpHiHAQMgloW0m+3bdvwfNdtk27CWR2YOK78V3SRxFU2P17c2TZ4S8SUXgTHzCVSZkb8TZsnVv1j7NysyUvulrcPvr/5e7Z55zqBhLg9Pbt7uln7Gr6EiiJj8xeB5ukTfqkbYkvT++5/QvWZf7/6URDYOW/th15hryv85zyYvu2PveMlUIUFT/OV5tYTpPoO7M9SxnZERwKNppM3Q1dCisuGaGVehha/n558/Xvv98/f7y/urmnde6Rt8yKZnIc+K3gVHVS/b5k+su5Nz1FmBhwACw++vkYmPjkPOQ5IZwz9/7IpaAlPvTg+/1484QpO69dP3CL4d27+rRMAzXL5JI4bW6GHxeafGKWPfmDqpxVIWmFs40kyJDft2ektFw12qHNx8jAKOqa78PhWZHdyj+p0k8W6hEmXmlp9g8HNt/4jhp8DNzqdoqcz+NbfMTQfYehhUMjOsN+dqWlzGaf8mntMYdW7Lw+b/J+10YnSMBgtYJJUM9a29R/UjRqyibko/9fgYmPQ81AEmzQ13unH/97e2L5lgfVQQqIUhIt+FhlfUs7fYGM+Wge4TCo23OljgE3YFUru/KvDMphFPBY+QF9JIdNJW1m24qor6qcaBI/X78UT+rPUMesMjC1cOpVHHhXAeO5/oshwgpO494rpzDMJuQjRuGQfb9CYDyhwN2/sQxN0W3I4P+niwvqWk6FTZ+milp8/Lq9oOd12jQsVQZOLaRaQTtAv+Bj4jcrWpAgB2vh/r63pPuOZ7nZjfbC44FTF0lhaSmjayHVCjoAugUfE4+CNg8S/9fj3RO9sqeqOxbMXRArj9UZ6FpItYIOAAAIobgwyXvdHAAAAABJRU5ErkJggg==" alt="9fj3RO9sqeqOxbMXRArj9UZ6FpItYIOAAAIobgwy" /> 。

思路:本来想把边转换成点来做的,但是YY了一下发现,当把边拆掉的时候就不能维护信息了,题解的做法很玄妙:把每个路径的两个端点都异或上同一个随机值,然后询问的时候询问x子树和y子树内异或和是不是都等于ans,ans为每条边的随机值异或和。

 #include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
int ch[][],rev[],sum[],o[];
int fa[];
int c[][],st[],ans;
int n,m,tot;
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
bool isroot(int x){
return ch[fa[x]][]!=x&&ch[fa[x]][]!=x;
}
void pushdown(int x){
int l=ch[x][],r=ch[x][];
if (rev[x]){
rev[x]^=;
rev[l]^=;rev[r]^=;
std::swap(ch[x][],ch[x][]);
}
}
void updata(int x){
int l=ch[x][],r=ch[x][];
sum[x]=o[x]^sum[l]^sum[r];
}
void rotate(int x){
int y=fa[x],f=ch[y][]!=x;
if (ch[y][f]=ch[x][f^]) fa[ch[y][f]]=y;
fa[x]=fa[y];if (!isroot(y)) ch[fa[y]][ch[fa[y]][]!=y]=x;
updata(ch[fa[y]=x][f^]=y);
}
void splay(int x){
int top=;st[++top]=x;
for (int i=x;!isroot(i);i=fa[i])
st[++top]=fa[i];
for (int i=top;i;i--) pushdown(st[i]);
while (!isroot(x)){
int y=fa[x],z=fa[y];
if (!isroot(y)){
if (ch[y][]==x^ch[z][]==y) rotate(x);
else rotate(y);
}
rotate(x);
}
updata(x);
}
void access(int x){
for (int t=;x;t=x,x=fa[x]){
splay(x);
o[x]^=sum[t]^sum[ch[x][]];
ch[x][]=t;
updata(x);
}
}
void makeroot(int x){
access(x);splay(x);rev[x]^=;
}
void link(int x,int y){
makeroot(x);makeroot(y);fa[x]=y;o[y]^=sum[x];updata(y);
}
void cut(int x,int y){
makeroot(y);access(y);
splay(x);
fa[x]=;o[y]^=sum[x];updata(y);
}
void add(int x,int y){
access(x);
splay(x);
o[x]^=y;
updata(x);
}
int main(){
int Id=read();
n=read();m=read();
srand(std::abs(n-m)*+);
for (int i=;i<n;i++){
int x=read(),y=read();
link(x,y);
}
while (m--){
int type=read();
if (type==){
int x=read(),y=read(),u=read(),v=read();
cut(x,y);link(u,v);
}else if (type==){
tot++;
c[tot][]=read();c[tot][]=read();int z=rand();
while (!z) z=rand();
c[tot][]=z;
add(c[tot][],z);add(c[tot][],z);ans^=z;
}else if (type==){
int k=read();
add(c[k][],c[k][]);
add(c[k][],c[k][]);
ans^=c[k][];
}else{
int x=read(),y=read();
makeroot(x);access(y);
if (o[x]==ans&&o[y]==ans) puts("YES");
else puts("NO");
}
}
}

XJOI网上同步训练DAY2 T2的更多相关文章

  1. XJOI网上同步训练DAY6 T2

    思路:记得FJ省队集训好像有过这题,可是我太弱了,根本不懂T_T #include<cstdio> #include<iostream> #include<cmath&g ...

  2. XJOI网上同步训练DAY3 T2

    考试的时候已经想出来怎么做了,但是没有时间打了T_T 思路:我们考虑将询问以lim排序,然后树链剖分,把边作为线段树的节点,然后随着询问lim的增大,改变线段树中节点的信息,然后每次询问我们用树链剖分 ...

  3. XJOI网上同步训练DAY2 T1

    [问题描述] 为了迎接校庆月亮中学操场开始施工.不久后操场下发现了很多古墓这些古墓中有很多宝藏.然而学生们逐渐发现自从操场施工之后学校的运气就开始变得特别不好.后来经过调查发现古墓下有一个太守坟由于操 ...

  4. XJOI网上同步训练DAY1 T2

    思路:似曾相识?...见http://www.cnblogs.com/qzqzgfy/p/5266874.html 一看时限还是4s!,于是就开开心心地打了70%的分,就是用容斥原理,就可以n^3解决 ...

  5. XJOI网上同步测试DAY14 T2

    思路:先考虑在D高度的最小圆覆盖,再一层一层往下走时,可以保证圆心与最开始的圆相同的时候答案是最优的. 时间复杂度O(n) 有一个坑点,就是我用了srand(time(NULL))就T了,RP太差了. ...

  6. XJOI网上同步训练DAY6 T1

    思路:考试的时候直接想出来了,又有点担心复杂度,不过还是打了,居然是直接A掉,开心啊. 我们发现,Ai<=7,这一定是很重要的条件,我们考虑状态压缩,去枚举路径中出现了哪些数字,然后我们把原来n ...

  7. XJOI网上同步训练DAY5 T1

    思路:考虑得出,最终的集合一定是gcd=1的集合,那么我们枚举n个数中哪个数必须选,然后把它质因数分解,由于质数不会超过9个,可以状态压缩,去得出状态为0的dp值就是答案. #include<c ...

  8. XJOI网上同步训练DAY5 T3

    就是对于一个数,我们去考虑把t*****减到(t-1)9999*的代价. #include<cstdio> #include<cmath> #include<algori ...

  9. XJOI网上同步训练DAY3 T1

    思路:看来我真是思博了,这么简单的题目居然没想到,而且我对复杂度的判定也有点问题.. 首先我们选了一个位置i的b,那一定只对i和以后的位置造成改变,因此我们可以这样看: 我们从前往后选,发现一个位置的 ...

随机推荐

  1. NSIS操作系统环境变量

    手头有个项目需要修改PATH变量 需要!include "EnvVarUpdate.nsh" 以下是NSIS脚本代码 ; Script generated by the HM NI ...

  2. Raid1源代码分析--开篇总述

    前段时间由于一些事情耽搁了,最近将raid1方面的各流程整理了一遍.网上和书上,能找到关于MD下的raid1的文档资料比较少.决定开始写一个系列的关于raid1的博客,之前写过的一篇读流程也会在之后加 ...

  3. java反编译工具(XJad)

    java反编译工具(XJad) 2.2 绿色版 http://www.cr173.com/soft/35032.html Demo.class     --->    Demo.java

  4. JDBC中Statement接口提供的execute、executeQuery和executeUpdate之间的区别

    Statement 接口提供了三种执行 SQL 语句的方法:executeQuery.executeUpdate 和 execute.使用哪一个方法由 SQL 语句所产生的内容决定. 方法execut ...

  5. 高性能MySql进化论【转】

    高性能MySql进化论(十二):Mysql中分区表的使用总结 http://binary.duapp.com/category/sql 当数据量非常大时(表的容量到达GB或者是TB),如果仍然采用索引 ...

  6. await与async的简单了解

    异步方法的返回类型可以为Task.Task.void.方法不能声明ref或out参数. 无法捕捉返回类型为void的异步方法引发的异常,如果返回Task或Task的异步方法中出现异常,则在任务等待时将 ...

  7. SQL Server 2005中的分区表(三):将普通表转换成分区表

    在设计数据库时,经常没有考虑到表分区的问题,往往在数据表承重的负担越来越重时,才会考虑到分区方式,这时,就涉及到如何将普通表转换成分区表的问题了. 那么,如何将一个普通表转换成一个分区表 呢?说到底, ...

  8. 调用具体webservice方法时时报错误:请求因 HTTP 状态 503 失败: Service Temporarily Unavailable

    添加web引用会在相应项目的app.cofig文件中产生如下代码: <sectionGroup name="applicationSettings" type="S ...

  9. OC基础 可变字典与不可变字典的使用

    OC基础 可变字典与不可变字典的使用 1.不可变字典 1.1创建不可变字典 //创建字典 //注意: //1,元素个数是偶数 //2,每两个元素是一个键值对 //3,值在前,键在后 NSDiction ...

  10. 1、Spark 通过api,hfile两种形式获取hbase数据,简单样例

    pom内容: <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-se ...